C. 1

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

LOAN COPY:

TECHNICAL REPORT R-118

BOUNDARY-LAYER SIMILAR SOLUTIONS
AND CORRELATION EQUATIONS FOR LAMINAR
HEAT-TRANSFER DISTRIBUTION IN EQUILIBRIUM
AIR AT VELOCITIES UP TO
41,100 FEET PER SECOND

By NATHANIEL B. COHEN

1961

TECHNICAL REPORT R-118

BOUNDARY-LAYER SIMILAR SOLUTIONS AND CORRELATION EQUATIONS FOR LAMINAR HEAT-TRANSFER DISTRIBUTION IN EQUILIBRIUM AIR AT VELOCITIES UP TO 41,100 FEET PER SECOND

By NATHANIEL B. COHEN

Langley Research Center Langley Air Force Base, Va.

		ļ
,		

CONTENTS

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SUMMARY
INTRODUCTION
SYMBOLS
RÉSUMÉ OF INTEGRAL METHOD OF REFERENCE 1
Transformation of Boundary-Layer Equations to Similarity Variables
Integral Method for Computing Heat-Transfer Distribution From Reference 1.
LOCALLY SIMILAR SOLUTIONS FOR EQUILIBRIUM DISSOCIATED AIR_ $_{-}$
The Computation Program
Thermodynamic and transport properties of equilibrium dissociated air
Limitations on parameters
Solutions obtained
Exact Similar Flows
Flat-plate flow $(F=0)$
Axisymmetric stagnation flow $(F=0)$
Stagnation flow for yawed infinite cylinder $(F=0)$
The effect of nonunit Lewis number
Locally Similar Solutions for the Heat-Transfer-Distribution Parameter
The $\beta$ -dependence
The effect of $t_c$ at constant $\beta$ .
Correlations for the nonisothermal wall term.
Relation for dependence of heat-transfer parameter $\zeta'_{w}/\zeta'_{w,s}$ upon $\beta_{s_1,\ldots,s_n}$
Complete correlation formula for heat-transfer-distribution function
Comparison with other solutions
SIMILAR SOLUTIONS APPLICABLE AT HIGHER ENTHALPY LEVELS
Locally Similar Boundary-Layer Equations in Terms of Effective Properties
Discussion of Similar Solutions
Flat-plate flow
Axisymmetric stagnation flow.
Stagnation flow for yawed infinite cylinder
The heat-transfer-distribution parameter
SUMMARY OF EQUATIONS FOR HEAT-TRANSFER CALCULATIONS
Flat-Plate Flow
Axisymmetric Stagnation Flow
Stagnation Flow for Yawed Infinite Cylinder
Heat-Transfer-Distribution Parameter
DISCUSSION
Validity of Assumption of Chemical Equilibrium.
Uncertainty in Transport-Property Approximations of Reference 4
Application of the Present Results to Three-Dimensional Flows
CONCLUDING REMARKS
APPENDIX—SIMILARITY BOUNDARY-LAYER FUNCTIONS FOR EQUI
LIBRIUM DISSOCIATED AIR.
Boundary-Layer-Thickness Functions
Skin-Friction and Heat-Transfer Functions
REFERENCES

#### TECHNICAL REPORT R-118

# BOUNDARY-LAYER SIMILAR SOLUTIONS AND CORRELATION EQUATIONS FOR LAMINAR HEAT-TRANSFER DISTRIBUTION IN EQUILIBRIUM AIR AT VELOCITIES UP TO 41,100 FEET PER SECOND

By NATHANIEL B. COHEN

#### SUMMARY

Locally similar solutions of the laminar boundary-layer equations are obtained for air at chemical equilibrium for static enthalpies up to  $1,000\overline{R}T_{\tau\theta f}$  (corresponding to the free-stream stagnation enthalpy for atmospheric flight at velocities up to 41,100 feet per second). Correlation of the transport property estimates of NASA TR R-50 are employed in the solutions.

Exact solutions for flat-plate flow, axisymmetric stagnation flow, and stagnation flow for a yawed infinite cylinder are obtained and correlating formulas for the appropriate heat-transfer functions are developed. A correlation formula for the heat-transfer distribution function for an arbitrary favorable pressure gradient on a body of revolution or yawed infinite cylinder is determined for application to various local similarity methods. Pertinent equations are collected in a single section for convenience. Extension to three-dimensional flows with small cross flow is briefly described.

#### INTRODUCTION

A knowledge of the expected aerodynamic heattransfer distribution on a body in high-speed flight is essential to proper design of thermalprotection systems. In reference 1 a method for computing the laminar heat-transfer distribution to yawed infinite cylinders of arbitrary cross section and to bodies of revolution at zero angle of attack was presented. This method employed the concept of satisfying the general integrated energy equation with locally similar boundarylayer profiles. Although the method of reference 1 was derived for air in dissociation equilibrium,

the similar profiles used therein were obtained from boundary-layer solutions for a perfect gas with viscosity proportional to temperature and with unit Prandtl number. Such an approximation was assumed to be reasonable for determining the ratio of local to reference heat-transfer rates on blunt bodies of practical concern, although insufficient for the calculation of the reference value itself. Experimental heat-transfer distributions obtained at Mach numbers from 3 to 6 on an unyawed circular cylinder and on a flat-faced body of revolution were used in reference 1 to show that the theory gave satisfactory predictions for the perfect-gas case even for large favorable pressure gradients. It was also shown that the simple local similarity technique of reference 2 (which itself is a more approximate form of the integral method of ref. 1) was sufficiently accurate for most design purposes.

Because the use of unit Prandtl number in the similar solutions of reference 1 restricts that analysis to the computation of heat-transfer distribution, a need exists for methods to determine the effect of gas properties upon the heat-transfer distribution and to establish accurately the reference heat-transfer rates for real air (e.g., the stagnation heat-transfer rate). The purpose of the present analysis is to provide a sufficiently large number of similar solutions of the laminar boundary-layer equations for air in chemical equilibrium in order to fulfill this requirement. A brief survey of some of the present results is included in reference 3. The present solutions are computed by use of the transport-property approximations of reference 4, as correlated in

reference 5, and these results are valid for flight up to a velocity of about 29,000 feet per second with zero yaw and to higher velocities with a sufficient degree of yaw. Additional transport property correlations are deduced from reference 4 and used in obtaining a representative group of similar solutions valid for flight at speeds up to 41,100 feet per second with zero yaw. Correlation formulas for the heat-transfer parameters are obtained and their application to the integral and simple local similarity methods of reference 1 is shown.

The results for the body of revolution have application to the more general problem of computing heat-transfer distribution along the inviscid surface streamlines on a three-dimensional body provided that the boundary-layer cross flow is small (refs. 6, 7, and 8). Application of the present solutions to these problems is briefly described.

#### **SYMBOLS**

C	mass concentration
$c_f$	skin-friction coefficient, $\frac{\tau_w}{\frac{1}{2} \rho_e u_e^2}$
$c_{f, x, w}$	skin-friction coefficient, $\frac{\tau_w}{\frac{1}{2} \rho_w u_e^2}$
$c_{f, y, w}$	skin-friction coefficient, $\frac{\tau_w}{\frac{1}{2} \rho_w u_\epsilon v_\epsilon}$
$c_p$	specific heat at constant pressure
$\dot{D}$	binary diffusion coefficient
$E_{\it tr}$	transformed mixed momentum
	thickness, $\int_0^\infty \frac{\partial f}{\partial \eta} (1-g) d\eta$
F	diffusion function, eq. (6)
$F_1, F_2, F_3$	three different approximations to the diffusion function for dissociated air
f	similar stream function, eq. (12)
$\overset{f}{G}_{t au}$	transformed thickness function,
	$\int_0^\infty (1-g^2)d\eta$
$G_1$	high-enthalpy correlation function for heat transfer, eqs. (75) and (78)
g	spanwise velocity ratio, $v/v_e$
H	total enthalpy, $h + \frac{u^2 + v^2}{2}$
h	static enthalpy
$h_E$	reference enthalpy, $250\overline{R}T_{ref}$ =2.119 $\times 10^8$ ft ² /sec ² =8,465 Btu/lb

HONAUTICS A	NO STACE ADMINISTRATION
$\underline{h}^*$	reference enthalpy, eq. (35c)
$\overline{h}$	similarity heat-transfer coefficient, eq. (64)
j	exponent $(j=0 \text{ for yawed infinite } \text{cylinder}; j=1 \text{ for body of revolution})$
k	thermal conductivity
L	arbitrary reference length
M	Mach number
m	exponent, equation (82)
$N_{\scriptscriptstyle Lc}$	Lewis number, $\frac{\rho c_{p,f}D}{k_f}$
$N_{\scriptscriptstyle Nu.\;w}$	Nusselt number, $\frac{-q_w c_{\rho,w} x}{k_w (h_{aw} - h_w)}$
$N_{Pr}$	Prandtl number, $\mu c_p/k$
$N_{{\scriptscriptstyle Re}}$	Reynolds number, $\rho_e u_e x/\mu_e$
$N_{{\scriptscriptstyle Re.w}}$	Reynolds number, $\rho_w u_e x/\mu_w$
$N_{s\iota}$	Stanton number, $\frac{-q_w}{\rho_e u_e (h_{aw} - h_w)}$
P,Q,R,N	parameters in equation (52)
$P_1, Q_1, R_1, N_1$	parameters from reference 1 in
	equation (66)
p	pressure
$p_{ref}$	reference pressure, 1 atmosphere =2,117 lb/sq ft abs
q	heat flux normal to surface at a point in the boundary layer
$ar{R}$	gas constant per unit mass of undissociated air, 1,724 ft²/sec²-°R =0.0689 Btu/lb-°R
r	radius of body of revolution
$\overline{r}$	enthalpy recovery factor
$r_N$	nose radius
T	absolute temperature
$T_{ au ef}$	reference temperature, 273.16° K =491.69° R
t	dimensionless static enthalpy, $h/H_e$
u, v, w	velocity components in $x$ , $y$ , and $z$ directions, respectively
$V_{\scriptscriptstyle{f \omega}}$	free-stream velocity
x, y, z	chordwise, spanwise, and normal
~, 9,	boundary-layer coordinates in physical system
β	pressure gradient parameter, eqs.
r-	(19) and (25)
Γ	heat-transfer function, eq. (24)
	ratio of specific heats
$\gamma \ \Delta_{II}^*$	transformed displacement thickness,
• •	
	$\int_0^\infty \left(\frac{\rho_c}{\rho} - \frac{\partial f}{\partial \eta}\right) d\eta$

$\delta_{i\tau}^*$	transformed displacement thickness,
	$\int_0^\infty \left(1 - \frac{\partial f}{\partial \eta}\right) d\eta$
ζ Θ _{tτ}	total enthalpy ratio, $H/H_e$
$\Theta_{tr}$	transformed convection thickness,
	$\int_0^\infty rac{\partial f}{\partial \eta} \!\! \left( rac{1-\zeta}{1-\zeta_w}  ight) d\eta$
$\Theta^*_{tr}$	transformed enthalpy thickness,
	$\int_0^\infty \left(rac{1-\zeta}{1-\zeta_w} ight)d\eta$
$\theta_{tr}^*$	transformed momentum thickness,
	$\int_0^\infty \frac{\partial f}{\partial \eta} \left( 1 - \frac{\partial f}{\partial \eta} \right) d\eta$
Λ	yaw angle
$\mu$	${f viscosity}$ ${f coefficient}$
$\mu_o$	arbitrary reference viscosity coeffi-
	$\operatorname{cient}$
$\xi, \eta$	similarity variables, eqs. (9) and (10)
$\frac{\xi}{\xi}$ , $\eta$	function of $x$ or $\xi$
ρ	mass density
au	shear stress
$\varphi$	density viscosity product ratio,
	$ ho\mu/ ho_w\mu_w$
$\psi$	stream function, eq. (11)

#### Subscripts:

atoms, molecules, constituents of a
binary mixture
adiabatic wall
evaluated at reference enthalpy $h_E$ and local pressure
local value external to boundary layer
frozen, effective, for specific heat and transport properties
ith species of gas mixture
stagnation point or line
local value at surface
chordwise, spanwise

#### Superscripts:

* evaluated at reference enthalpy  $h^*$  differentiation with respect to  $\eta$ 

# RÉSUMÉ OF INTEGRAL METHOD OF REFERENCE 1

# TRANSFORMATION OF BOUNDARY-LAYER EQUATIONS TO SIMILARITY VARIABLES

The Prandtl boundary-layer equations expressing the conservation of mass, momentum, and energy for the steady flow of an equilibrium reacting mixture of "air molecules" and "air atoms" on a body of revolution at zero angle of attack or on an infinite cylinder in yaw are (refs. 1 and 9):

$$\frac{\partial}{\partial x} (\rho u r^{j}) + \frac{\partial}{\partial z} (\rho w r^{j}) = 0 \tag{1}$$

$$\rho u \frac{\partial u}{\partial x} + \rho w \frac{\partial u}{\partial z} = \rho_{\epsilon} u_{\epsilon} \frac{du_{\epsilon}}{dx} + \frac{\partial}{\partial z} \left( \mu \frac{\partial u}{\partial z} \right) \qquad (2)$$

$$\rho u \frac{\partial v}{\partial x} + \rho w \frac{\partial v}{\partial z} = \frac{\partial}{\partial z} \left( \mu \frac{\partial v}{\partial z} \right) \qquad \left( \frac{\partial p}{\partial y} = 0 \right) \qquad (3)$$

$$\frac{\partial p}{\partial z} = 0$$
 (4)

$$\rho u \frac{\partial H}{\partial x} + \rho w \frac{\partial H}{\partial z} = \frac{\partial}{\partial z} \left[ \frac{\mu}{N_{Pr,f}} (1+F) \frac{\partial H}{\partial z} + \frac{\mu}{N_{Pr,f}} (N_{Pr,f} - 1 - F) \left( u \frac{\partial u}{\partial z} + v \frac{\partial v}{\partial z} \right) \right]$$
(5)

where for the yawed infinite cylinder, j=0,  $v=\text{Constant}=v_c$  outside the boundary layer, and  $\partial v/\partial y=0$  within the boundary layer. For a body of revolution, j=1 and v=0. The coordinate systems are shown in figure 1. Because of the assumption of equilibrium dissociation, the continuity equations of the individual species, in this case air atoms and air molecules, need not be considered because the local species concentrations are functions only of the state of the gas. In equation (5), thermal diffusion has been neglected.

The function F is defined for the equilibrium binary mixture by

$$F(p,h) = (N_{Le} - 1)(h_A - h_M) \left(\frac{\partial C_A}{\partial h}\right)_{p = Const.}$$
(6)

and is a function of the state of the gas, as are the following properties:

μ viscosity

 $N_{Pr,f}$  frozen Prandtl number,  $\frac{\mu c_{p,f}}{k_f}$ 

 $c_{p,i}$  frozen specific heat at constant pressure,  $\sum_i C_i c_{p,i}$ 

frozen conductivity

The simulation of equilibrium dissociated air by





- (a) Coordinates for the yawed infinite cylinder.
- (b) Coordinates for the body of revolution.

FIGURE 1.—Boundary-layer coordinate systems.

a binary mixture of air atoms and molecules in chemical equilibrium is based upon the similar properties of oxygen and nitrogen atoms and oxygen and nitrogen molecules and the fact that ionization of the atoms is not important until dissociation of the molecules is complete. (See, for example, refs. 4 and 9.) As shown in reference 5, this binary mixture representation should be valid up to enthalpies of  $500\overline{R}T_{ref}$ , corresponding to the stagnation enthalpy for flight up to about 29,000 feet per second. All subsequent derivations and numerical results based upon the energy equation in the form of equation (5) are restricted to enthalpies below this limit. Higher enthalpies are considered in a subsequent section.

Boundary conditions for equations (1) through (5) are:

At 
$$z=0$$
,  $u=v=w=0$  (7a)

and, with heat transfer

$$H = H_w(x)$$
 (7b)

or, for an insulated wall

$$\frac{\partial H}{\partial y} = 0 \tag{7c}$$

As  $z \rightarrow \infty$ 

Transformation of the boundary-layer equations is afforded by the definitions of the similarity coordinates (refs. 1, 2, and 9, for example)

$$\xi = \frac{1}{\mu_o^2} \int_0^x \rho_w \mu_w u_c \left(\frac{r}{L}\right)^{2j} dx = \xi(x) \tag{9}$$

$$\eta = \frac{u_e \left(\frac{r}{L}\right)^j}{\mu_o \sqrt{2(\xi - \overline{\xi})}} \int_0^z \rho dz = \eta(x, z)$$
 (10)

the stream function (satisfying eq. (1))

$$\frac{\partial \psi}{\partial z} = \rho u \left(\frac{r}{L}\right)^{i} \tag{11a}$$

$$\frac{\partial \psi}{\partial x} = -\rho w \left(\frac{r}{L}\right)^j \tag{11b}$$

and the similarity-type dependent variables

$$f(\xi,\eta) = \frac{\psi}{\mu_o \sqrt{2(\xi - \bar{\xi})}} \tag{12}$$

$$g(\xi, \eta) = \frac{v}{v} \tag{13}$$

$$\zeta(\xi,\eta) = \frac{H}{H_c} \tag{14}$$

From equations (9) to (12), the chordwise velocity profile is

$$\frac{\partial f}{\partial \eta} = \frac{u}{u_e} \tag{15}$$

The function  $\overline{\xi} = \overline{\xi}(x)$  is yet to be determined.

Transformation of equations (2), (3), and (5) to the similarity coordinate system yields

$$\frac{\partial}{\partial \eta} \left( \varphi \frac{\partial^{2} f}{\partial \eta^{2}} \right) + \left( 1 - \frac{d\overline{\xi}}{d\overline{\xi}} \right) f \frac{\partial^{2} f}{\partial \eta^{2}}$$

$$= \beta \left[ \left( \frac{\partial f}{\partial \eta} \right)^{2} - \frac{\zeta}{t_{s}} + \left( \frac{1 - t_{s}}{t_{s}} \right) g^{2} - \frac{t_{c}}{t_{s}} \left( \frac{\rho_{e}}{\rho} - \frac{t}{t_{e}} \right) \right]$$

$$+ 2(\xi - \overline{\xi}) \left( \frac{\partial f}{\partial \eta} \frac{\partial^{2} f}{\partial \eta \partial \xi} - \frac{\partial f}{\partial \xi} \frac{\partial^{2} f}{\partial \eta^{2}} \right) \quad (16)$$

$$\begin{split} \frac{\partial}{\partial \eta} \left( \varphi \frac{\partial g}{\partial \eta} \right) + \left( 1 - \frac{d\overline{\xi}}{d\xi} \right) f \frac{\partial g}{\partial \eta} &= 2(\xi - \overline{\xi}) \left( \frac{\partial f}{\partial \eta} \frac{\partial g}{\partial \xi} - \frac{\partial f}{\partial \xi} \frac{\partial g}{\partial \eta} \right) \\ \frac{\partial}{\partial \eta} \left[ \frac{\varphi}{N_{Pr,f}} \left( 1 + F \right) \frac{\partial \zeta}{\partial \eta} \right] + \left( 1 - \frac{d\overline{\xi}}{d\xi} \right) f \frac{\partial \zeta}{\partial \eta} \\ &= \frac{\partial}{\partial \eta} \left\{ \frac{\varphi}{N_{Pr,f}} \left( 1 - N_{Pr,f} + F \right) \right. \end{split}$$

$$\left[ (t_s - t_e) \frac{\partial}{\partial \eta} \left( \frac{\partial f}{\partial \eta} \right)^2 + (1 - t_s) \frac{\partial}{\partial \eta} (g^2) \right] \right\} 
+ 2(\xi - \overline{\xi}) \left( \frac{\partial f}{\partial \eta} \frac{\partial \xi}{\partial \xi} - \frac{\partial f}{\partial \xi} \frac{\partial \xi}{\partial \eta} \right) (18)$$

where the pressure gradient parameter  $\beta$  is defined by

$$\beta = \frac{2(\xi - \overline{\xi})}{u_c} \frac{t_s}{t_e} \frac{du_e}{d\xi} \tag{19}$$

and the static enthalpy ratio t by

$$t = \frac{h}{H_e} = \zeta - (1 - t_s) g^2 - (t_s - t_e) \left(\frac{\partial f}{\partial \eta}\right)^2 \qquad (20)$$

On the infinite cylinder in yaw,  $t_s$  is a constant given by

$$t_s = 1 - \frac{{v_r}^2}{2H_s} = 1 - \frac{{V_{\infty}}^2 \sin^2 \Lambda}{2H_s}$$

and is thus the static enthalpy ratio outside the boundary layer on the stagnation line  $(u_{\epsilon}=0)$ . For the body of revolution at zero angle of attack,  $t_s \equiv 1$  and  $g \equiv 0$ . The function  $\varphi$  is defined by

$$\varphi = \frac{\rho \mu}{\rho_{\kappa} \mu_{\kappa}}$$

Boundary conditions in the similarity coordinate system are, at  $\eta=0$ ,

$$f(0,\xi) = \frac{\partial f}{\partial \eta}(0,\xi) = g(0,\xi) = 0$$
 (21a)

and with heat transfer,

$$\zeta(0,\xi) = \zeta_w(\xi) = t_w(\xi)$$
 (21b)

or for an insulated wall.

$$\frac{\partial \zeta}{\partial \eta} (\gamma, \xi) = 0 \tag{21c}$$

As 
$$\eta \to \infty$$
,  

$$\frac{\partial f}{\partial \eta}(\infty, \xi) = g(\infty, \xi) = \zeta(\infty, \xi) = 1 \qquad (22)$$

668-943-63--2

Equations (16) to (18) and the boundary conditions are general within the boundary-layer assumptions for the assumed flow geometry, and the only requirement is that the air be in dissociation equilibrium in order that the binary mixture approximations are applicable.

# INTEGRAL METHOD FOR COMPUTING HEAT-TRANSFER DISTRIBUTION FROM REFERENCE 1

The partial differential equations in the similarity coordinates, equations (16) to (18), are in general difficult to solve. For exactly similar flow, all variation with  $\xi$  disappears and the resulting ordinary differential equations may be solved numerically. However, exactly similar flows are the exception rather than the rule; their occurrence is discussed, for example, in references 1, 10, and 11.

One method of attack for the more general nonsimilar flows is to integrate the equations of motion and energy across the boundary layer to obtain ordinary differential equations which may be solved after suitable approximations are made for the velocity and enthalpy profiles. In the method of reference 1, it is assumed that the profiles are those of the similar type, that is, profiles which are solutions of the ordinary differential equations that result from equations (16) to (18) when all derivatives with respect to  $\xi$  are set equal to zero. These solutions are applied at each x (or  $\xi$ ) station in the nonsimilar flow by using the appropriate values of ts and the local values of the parameters  $t_e$ ,  $\zeta_w$ , and  $\beta$ . Only one function  $\overline{\xi}(\xi)$  is unknown, and thus only one of the three conservation laws may be utilized. In reference 1 it is assumed that the heat transfer is generally of most interest; thus, the integrated energy equation is satisfied in preference to the two integrated momentum equations.

The results of these assumptions for the heattransfer distribution on blunt yawed cylinders or bodies of revolution are embodied in the following equation:

$$\frac{q_{w}}{q_{w,s}} = \sqrt{\frac{\frac{\rho_{w}\mu_{w}}{\beta t_{e}} \frac{du_{e}}{dx}}{\left(\frac{\rho_{w}\mu_{w}}{\beta t_{e}}\right)_{s}\left(\frac{du_{e}}{dx}\right)_{s}}} \Gamma$$
(23)

where

$$\Gamma = \frac{\frac{1 + F_w}{N_{Pr, w}} \zeta_w'}{\left(\frac{1 + F_w}{N_{Pr, w}} \zeta_w'\right)_s} \tag{24}$$

$$\beta = \frac{2t_s \left(\frac{du_e}{dx}\right)}{\rho_w \mu_w u_e^2 t_e \left(\frac{r}{L}\right)^{2j} \Gamma^2} \int_0^x \rho_w \mu_w u_e \left(\frac{r}{L}\right)^{2j} \Gamma^2 dx \quad (25)$$

and where  $\zeta_w' = \zeta_w'(t_s, t_e, \zeta_w, \beta)$  as determined from solutions of the locally similar boundary-layer equations. The complete integral method of reference 1 is represented by equations (23) to (25) and requires an iterative solution. The simple local similarity method of reference 1 results when  $\Gamma$  is set equal to unity in equation (25) only; this result is essentially the method of reference 2 and does not require iteration because  $\beta$  is then a function only of inviscid flow and wall conditions. With  $\Gamma \equiv 1$  in both equations (23) and (25), a method essentially equivalent to that of Lees (ref. 11) is obtained; this last method was proposed therein for blunt unyawed cylinders on bodies of revolution with highly cooled walls and is independent of the boundary-layer similar solutions.

# LOCALLY SIMILAR SOLUTIONS FOR EQUILIBRIUM DISSOCIATED AIR

In the integral method for computing heat-transfer distribution just described, the dependence of the heat-transfer distribution function,  $\zeta''_w/\zeta'_w$ , upon the various parameters for the case of locally similar flows is required. In reference 1, unit Prandtl number solutions provided an approximation for this parameter. Evaluation of this parameter for real air in dissociation equilibrium is now described.

#### THE COMPUTATION PROGRAM

The equations governing locally similar profiles are, from equations (16) to (18) with  $\frac{\partial}{\partial \xi} = 0$ 

$$(\varphi f^{\prime\prime})^{\prime} + f f^{\prime\prime} = \beta \left[ (f^{\prime})^2 - \frac{\zeta}{t_s} + \left(\frac{1 - t_s}{t_s}\right) g^2 - \frac{t_e}{t_s} \left(\frac{\rho_e}{\rho} - \frac{t}{t_e}\right) \right]$$
(26)

$$(\varphi g')' + fg' = 0 \tag{27}$$

$$\left[\frac{\varphi}{N_{Pr,f}}(1+F)\zeta'\right]' + f\zeta' = \left\{\frac{\varphi}{N_{Pr,f}}(1-N_{Pr,f}+F)\right]$$

$$\left[(t_s - t_e)(f')^{2'} + (1-t_s)(g^2)'\right]$$
(28)

with the boundary conditions

$$f(0) = f'(0) = g(0) = 0$$
 (29a)

and with heat transfer,

$$\zeta(0) = \zeta_w \tag{29b}$$

or for an insulated wall

$$\zeta'(0) = 0 \tag{29c}$$

$$f'(\infty) = g(\infty) = \zeta(\infty) = 1 \tag{30}$$

where  $\beta$ ,  $t_s$ ,  $t_e$ , and  $\zeta_w$  are parameters evaluated locally. Solutions of equations (26) to (28) determine the functional dependence of  $\zeta_w'$  upon the parameters as required by the equations for heat-transfer distribution (eqs. (23) to (25)).

Equations (26) to (28), subject to boundary conditions (29) and (30), were programed on the IBM type 704 electronic data processing machine and solved for wide ranges of the various parameters. Integration was carried out in much the same manner as described in appendix B of reference 12. The variable gas properties  $\rho_e/\rho$ ,  $\varphi$ ,  $N_{Pr,f}$ , and F, obtained from reference 5, were incorporated in the program as tabular functions of static enthalpy, and are described in the following section.

Thermodynamic and transport properties of equilibrium dissociated air.—From reference 5, equations governing  $\rho_e/\rho$  and  $\varphi$  at constant pressure

$$\frac{\rho_e}{\rho} = \frac{\rho_E/\rho}{\rho_E/\rho_e} = \frac{1.0477 \left(\frac{t}{t_E}\right)^{0.6123} - 0.0477}{1.0477 \left(\frac{t_e}{t_E}\right)^{0.6123} - 0.0477}$$
(31a)

$$\varphi = \frac{\rho \mu}{\rho_w \mu_w} = \frac{\rho_E \mu_E / \rho_w \mu_w}{\rho_E \mu_E / \rho \mu} = \frac{1.0213 \left(\frac{f_w}{t_E}\right)^{0.3329} - 0.0213}{1.0213 \left(\frac{t}{t_E}\right)^{0.3329} - 0.0213}$$
(31b)

where  $t/t_E = h/h_E$  and where  $h_E$  is a reference enthalpy,  $h_E = 250\overline{R}T_{ref}$ .

The frozen Prandtl number was obtained from table I of reference 5. Most of the cases were computed with F=0, which is appropriate for unit Lewis number. The effect of nonunit Lewis number was investigated for a few cases by using three different estimates for the diffusion function,  $F_1$ ,  $F_2$ , and  $F_3$ , discussed in a subsequent section. Tables of  $N_{Pr}$ ,  $F_1$ ,  $F_2$ , and  $F_3$  are given in table I.

These functions are assumed valid for the ranges

$$0.0152 \le \frac{h}{h_E} \le 2$$

$$10^{-4} \le p/p_{ref} \le 10$$

as in reference 5. Note that use of these gas properties introduces another parameter  $(t_E=h_E/H_e)$ , representing the level of the total enthalpy outside the boundary layer) which must be specified in order to obtain locally similar solutions.

Limitations on parameters.—The primary limitation on the local enthalpy in the boundary layer is determined by the validity of the gas property correlations as

$$0.0152 \le \frac{h}{h_E} = \frac{t}{t_E} \le 2 \tag{32}$$

The lower limit represents the enthalpy at a temperature of 300° K; the upper limit is equal to the free-stream total enthalpy in atmospheric flight at a velocity of about 29,000 feet per second. Values of the yaw parameter,  $t_s$ , of 1,  $\frac{1}{3}$ ,  $\frac{1}{3}$ , and  $\frac{1}{3}$ 0 were chosen, and values of  $t_e$  were assumed to be within

$$0.2 \leq \frac{t_e}{t_s} \leq 1$$

The lower limit should include isentropic expansion from a stagnation line to free-stream pressure for most practical conditions.

Consistent with the limits in equation (32), values of the enthalpy-level parameter  $t_E$  were chosen corresponding to free-stream velocities up to 29,000 ft/sec ( $t_E \ge 0.5$ ) for zero yaw ( $t_s = 1$ ). For finite yaw the stagnation-line enthalpy is less than the free-stream total enthalpy and values of the enthalpy-level parameter may be so chosen that the maximum velocity is  $\frac{29,000}{\cos \Lambda}$  feet per second. A limit was arbitrarily set for these cases such that

$$H_e \leq 3h_E \left(t_E \geq \frac{1}{3}, V_{\infty} \leq 35,600 \text{ ft/sec}\right)$$

For heat-transfer cases the wall temperature was restricted to the range from 300° K to about 1,750° K, or more specifically

$$0.0152 \le \frac{h_w}{h_x} \le 0.1$$

for all enthalpy levels. For this wall enthalpy range,  $F_w$  was always zero and hence any nonunit Lewis number effects were secondary effects caused by boundary-layer profile distortions away from the wall. These effects were expected to be small. Insulated wall cases were computed only for certain conditions where the total enthalpy outside the boundary layer did not exceed  $2h_E$  even for large yaw.

Values of  $\beta$  from zero to about 3.5 were used. Above this limit, solutions of equations (26) to (28) were not generally obtained because of numerical difficulties.

Solutions obtained.—Tables II, III, and IV are a compilation of the results of the program for equilibrium dissociated air. Table II lists all the cases and serves as a key to the solutions given in tables III and IV. The values of flight velocity shown in table II were computed by using a nominal free-stream static enthalpy of  $3.8\overline{R}T_{ref}$ =  $0.0152h_E$ . Shown in tables III and IV are only selected results at a few pertinent values of  $\beta$ ; solutions actually were obtained at up to 20 different values of  $\beta$  between 0 and 3.5. For the special case of  $t_s = t_c$ , F = 0, solutions of the outer limit equations for  $\beta \rightarrow \infty$  (see appendix B of ref. 1) were obtained with the dissociated air properties to aid in obtaining heat-transfer correlation formulas; these are displayed in the appropriate locations in table III. Listed (for F=0) are the values of  $f''_w$ ,  $g'_w$ ,  $\zeta'_w$  (or  $\overline{r}$ ) and, for heat-transfer cases, the displacement thickness,  $\Delta_{tr}^*$ . Other pertinent thicknesses may be found from these values and equations (A9) to (A11) of the appendix. For nonunit Lewis number (table IV), only  $\zeta'_w$  or  $\overline{r}$ are shown.

The discussions that follow center primarily on results for the heat transfer, that is,  $\zeta'_w$ . Discussions regarding recovery factor and skin-friction functions are limited to certain special cases.

#### EXACT SIMILAR FLOWS

For flow on an isothermal flat plate, axisymmetric stagnation flows, and stagnation flows for the yawed infinite cylinder, solutions of equations (26) to (28) yield the corresponding exact boundary-layer profiles because, in these cases, no variation with  $\xi$  is present. First to be discussed are solutions for the cases for which unit Lewis number (F=0) is assumed. The effect of nonunit Lewis number is then discussed.

Flat-plate flow (F=0).—Flat-plate flow is represented by equations (26) to (28) with  $\beta=0$  because, for a flat plate,  $\frac{du_e}{dx}=0$ . From equations (26), (27), (29), and (30), it is apparent that  $g(\eta)=f'(\eta)$  and thus the system of equations for this case is independent of the yaw parameter  $t_s$ . For an isothermal wall,  $\zeta_w$  is constant and the requirements for similarity are satisfied. Solutions of these equations are found in tables III(a) and III(b) for a wide variety of cases. Skin-friction and heat-transfer coefficients were computed from the transformation equations as

$$c_f \sqrt{N_{Re}} = \sqrt{2} f_w^{\prime\prime} \left( \frac{\rho_w \mu_w}{\rho_e \mu_e} \right)^{1/2} \tag{33}$$

$$N_{St}\sqrt{N_{Re}} = \frac{1}{\sqrt{2}N_{Pr,f,u}} \frac{\zeta_u'}{\zeta_{au}} \left(\frac{\rho_u \mu_u}{\rho_e \mu_e}\right)^{1/2} \quad (34)$$

The skin-friction coefficient as computed from the similar solutions is shown in figure 2 plotted against  $\rho_e\mu_e/\rho_w\mu_w$  for a few values of  $t_e$ , the parameter indicating the effect of local Mach number. For a perfect gas with constant specific heats

$$M_e^2 = \frac{2}{\gamma - 1} \left( \frac{1}{t_e} - 1 \right)$$

and the values of the local Mach number for  $\gamma=1.4$  are also listed in figure 2.



FIGURE 2.—Laminar flat-plate skin-friction coefficient as a function of  $\frac{\rho_e \, \mu_c}{\rho_w \mu_w}$  for equilibrium dissociated air.  $N_{Le}{=}1$ . Open symbols represent present solutions; filled symbols represent perfect-gas solution of reference 15.

For each value of  $t_e$ , the numerical data plot as a single curve, independent of total enthalpy level  $t_E$  and surface cooling ratio  $\zeta_w$ . Shown for comparison in figure 2 are results obtained by using the reference enthalpy method of reference 13 applied with the properties of equilibrium dissociated air from reference 5. The equations for this approximation are

$$c_f \sqrt{N_{Re}} = 0.664 \sqrt{\frac{\rho^* \mu^*}{\rho_e \mu_e}}$$
 (35a)

$$\frac{\rho^* \mu^*}{\rho_e \mu_e} = \frac{1.0213 \left(\frac{t_e}{t_E}\right)^{0.3329} - 0.0213}{1.0213 \left(\frac{t^*}{t_E}\right)^{0.3329} - 0.0213}$$
(35b)

$$\frac{h^*}{h_E} = \frac{t_e}{t_E} = \frac{t_e}{t_E} \left[ 0.5 \left( 1 + \frac{\zeta_w}{t_e} \right) - 0.22 \overline{r} \left( 1 - \frac{1}{t_e} \right) \right] \quad (35c)$$

where  $\overline{r}$  is the enthalpy recovery factor taken here as a constant equal to  $\sqrt{0.7}$  for simplicity. (See fig. 3(a).) Results of the reference enthalpy method are also essentially independent of  $t_E$  and  $\xi_w$  and give lower skin-friction coefficients than the exact solution by at most 5 percent. A modified form of the reference enthalpy method which might have slightly improved accuracy is given in reference 14.

Shown also in figure 2 are a few points computed for a perfect gas with the Sutherland viscositytemperature relation (ref. 15); these latter points



(a) Recovery-factor dependence upon static-enthalpy ratio.

Figure 3.—Flat-plate enthalpy recovery factor for equilibrium dissociated air.  $N_{Le}=1$ .

were appropriate only for a free-stream temperature of  $-67^{\circ}$  F, but the results should be independent of free-stream temperature when plotted as a function of  $\rho_{e}\mu_{e}/\rho_{w}\mu_{w}$ . Significant differences occur only for low speed, high-enthalpy-level boundary layers  $\left(t_{e}\rightarrow1,\frac{\rho_{e}\mu_{e}}{\rho_{w}\mu_{w}}\ll1\right)$ . Elsewhere the real-gas effect is less than 5 percent on the skinfriction coefficient.

The enthalpy recovery factor was investigated for a few cases picked at random and the results (from table III(b)) are shown in figure 3. From figure 3(a) there appears to be no simple correlation function for recovery factor directly in terms of  $t_E$  and  $t_c$ . However,  $\overline{r}$  never deviates far from the nominal low-speed value,  $\sqrt{0.7}$  (for a perfect gas with a constant Prandtl number of 0.7). For a variable Prandtl number, the approximation  $\overline{r} \approx \sqrt{N_{Pr,f}^*}$  has been proposed (ref. 13). Most of the data are within two percent of the values predicted by this approximation as may be seen in figure 3(b).

Flat-plate heat-transfer coefficients were investigated in terms of the Reynolds analogy factor  $N_{St}/c_f$ , a ratio which is very closely approximated by the function  $\frac{1}{2}(N_{Pt})^{-2/3}$  for a gas with constant Prandtl number. The accuracy of the



(b) Comparison of approximate and exact recovery factors.

FIGURE 3.—Concluded.

variable Prandtl number counterpart of this relation,

$$\frac{N_{Sl}}{c_f} = \frac{1}{2} \left( N_{P_{f,f}}^* \right)^{-2/3} \tag{36}$$

is shown on figure 4 where this relation is compared to the results of the flat-plate similar solutions. In computing the Stanton number from the similar enthalpy derivative (eq. (34)), approximate values of  $\overline{r} = \sqrt{N_{P_{t,f}}^*}$  were used. For most cases, the ratio of wall enthalpy to free-stream stagnation enthalpy (t, ) was far from unity and the error introduced by this approximation should be very small. Those cases with  $0.2 < \zeta_w < 2$  are shown as the flagged points in figure 4, and for these points, use of an approximate recovery factor could possibly introduce a large error. Two points in this group are particularly far from the correlation. For five of these cases (with 0.2  $<\zeta_w<2$ ), the exact recovery factors were available and were used in recomputing the Stanton number. The results are shown in the figure as the filled



FIGURE 4.—Comparison of exact and approximate Reynolds analogy factors for flat-plate flow of equilibrium dissociated air.  $N_{Le}=1$ .

points, each corresponding to the flagged point at the same value of  $\frac{1}{2}(N_{P_{I},f}^*)^{-2/3}$ ; this correction improves the correlation of the two worst points significantly. Thus, use of equation (36) should generally give results within about 4 percent of the exact solutions for  $N_{St}/c_f$ , and for the most part would overestimate this ratio. When equations (35) and (36) are combined to yield  $N_{St}$ , the values predicted should be very accurate for most cases because the errors in  $c_f$  and  $N_{St}/c_f$  are generally compensating.

Axisymmetric stagnation flow (F=0).—The boundary-layer flow at the stagnation point of a body of revolution at zero angle of attack  $\left(\frac{u_e}{x} = \frac{du_e}{dx} = \text{Constant}, j=1\right)$  is described by solutions of equations (26) and (28) with  $t_s = t_e = 1$ 

and  $\beta = \frac{1}{2}$ . The heat transfer for this case is conveniently described by the Nusselt number, given by (see appendix)

$$\left[\frac{N_{Nu, w}}{(N_{Re, w})^{1/2}}\right]_{s} = \frac{\sqrt{2}\zeta'_{w}}{1 - \zeta_{w}} (1 + F_{w})$$
 (37)

Correlations of the numerical results (table III(a)) were sought in the form of  $[N_{Nu, w}/(N_{Pr, f, w})^{0.4} (N_{Re, w})^{0.5}]_s$  as a function of the  $\rho\mu$  ratio across the boundary layer and the results are shown in figure 5 along with the correlating function

$$\left[\frac{N_{Nu,w}}{(N_{PL,t,w})^{0.4}(N_{Re,w})^{0.5}}\right]_{s} = 0.767 \left(\frac{\rho_{c}\mu_{e}}{\rho_{w}\mu_{w}}\right)^{0.43}_{s} (38)$$

which fits the numerical data within about  $\pm 5$  percent. The Prandtl number dependence was assumed to have the same form as that for a



FIGURE 5.—Stagnation-flow heat-transfer parameter as a function of  $\left(\frac{\rho_c \, \mu_r}{\rho_u \, \mu_v}\right)_s$  for equilibrium dissociated air.  $N_{L_t} = 1$ .

constant Prandtl number gas and its inclusion in the correlation function resulted in a slightly smaller scatter of the data than if it were omitted. Such a dependence upon Prandtl number would not be expected to apply if the Prandtl number variation across the boundary layer were more extreme than that for the frozen Prandtl number used herein.

It is noteworthy that the coefficient and exponent on the right-hand side of equation (38) appear to be very little dependent upon the gas properties used in solutions of the differential equations, at least up to the onset of ionization. For example, for the case of constant fluid properties (incompressible fluid), the coefficient and exponent obtained are 0.763 and 0.5, respectively (ref. 16). Corresponding values of 0.768 and 0.4, respectively, were obtained for equilibrium dissociated air with unit Lewis number (ref. 9) and for a perfect gas with constant specific heats (ref. 17), where in both cases the assumption of the Sutherland viscosity relation and a constant Prandtl number were employed. Although the Nusselt number parameter of equation (38) is little influenced by fluid properties, the heattransfer rate may be more strongly affected. For the correlation of equation (38), the heat-transfer rate may be written

$$-q_{w,s} = 0.767 (N_{Pr,f,w})_s^{-0.6} (H_e - h_w)_s$$

$$(\rho_c \mu_e)_s^{0.43} (\rho_w \mu_w)_s^{0.07} \sqrt{\left(\frac{du_e}{dx}\right)_s}$$
(39)

For two different estimates of the high-temperature transport properties of air, the corresponding stagnation-point heat-transfer rates will be in proportion to the 0.43 power of the stagnation viscosity, all other quantities being equal. For example, the ratio of Hansen's viscosity to the Sutherland viscosity at 29,000 feet/second is as much as about 1.35, depending upon pressure level. If each of these viscosity estimates is used, the computed heat-transfer rates would be different by as much as 15 percent. As better estimates of the transport properties of equilibrium dissociated air become available, a correspondingly better estimate of stagnation point heat-transfer rates should be possible through the use of equation (39) without modification of the coefficient and exponent arising in equation (38) provided that the frozen Prandtl number does not vary greatly about a mean value.

Stagnation flow for yawed infinite cylinder (F=0).—With  $\beta=1$  and  $t_s=t_e\leq 1$ , equations (26) to (28) represent the stagnation line boundary layer on a yawed infinite cylinder  $\left(\frac{u_e}{x} = \frac{du_e}{dx}\right)$  =Constant, j=0. With F=0, solutions for 49 heat-transfer cases were computed with values of the yaw parameter  $t_s$  of 1, 1/3, 1/10, and 1/30 (table III(a)). From the appendix, the Nusselt number function is given by

$$\left[\frac{N_{Nu, w}}{(N_{Re, w})^{0.5}}\right]_{s} = \frac{\zeta'_{w}}{\zeta_{aw} - \zeta_{w}} (1 + F_{w})$$
 (40)

In the computation of this function from the similar solutions, a recovery factor of 0.85 was used as an approximation to the exact values which varied from 0.84 to 0.88 for those insulated-wall stagnation-line cases computed in the present program as well as those of reference 17 for a perfect gas. (See table III(b) and fig. 6.)

Results are shown in figure 5 along with the following correlating functions:

For 
$$\left(\frac{\rho_{e}\mu_{e}}{\rho_{w}\mu_{w}}\right)_{s} \leq 1$$
,
$$\left[\frac{N_{Nu,w}}{(N_{Pr,f,w})^{0.4}(N_{Re,w})^{0.5}}\right]_{s} = 0.57 \left(\frac{\rho_{e}\mu_{e}}{\rho_{w}\mu_{w}}\right)_{s}^{0.45} \quad (41a)$$



FIGURE 6.—Enthalpy recovery factor for yawed infinite cylinder stagnation line.  $N_{L_c}=1$ .

For 
$$\left(\frac{\rho_{e}\mu_{e}}{\rho_{w}\mu_{w}}\right)_{s} \ge 1$$
,
$$\left[\frac{N_{Nu, w}}{(N_{Pr, f, w})^{0.4}(N_{Re, w})^{0.5}}\right]_{s} = 0.57 \left(\frac{\rho_{e}\mu_{e}}{\rho_{w}\mu_{w}}\right)_{s}^{0.67} (41b)$$

which fit the numerical data within about  $\pm 7$  percent independent of the enthalpy level. The reason that two functions have been used here to better fit the data is that at large yaw, values of  $(\rho_e\mu_e/\rho_w\mu_w)_s$  greater than unity may represent practical high-speed flight conditions with a highly cooled wall, whereas at zero yaw or with axial symmetry, values of  $(\rho_e\mu_e/\rho_w\mu_w)_s$  will always be less than unity for highly cooled walls.

Equations (41a) and (41b) may be compared with the results for perfect air with constant specific heats, constant Prandtl number, and the Sutherland viscosity relation (ref. 17), which correlate as

$$\left[\frac{N_{Nu,w}}{(N_{P_{7},w})^{0.4}(N_{Re,w})^{0.5}}\right]_{s} = 0.577 \left(\frac{\rho_{e}\mu_{e}}{\rho_{w}\mu_{w}}\right)_{s}^{0.44} (42)$$

and little effect of the gas properties is seen for  $\left(\frac{\rho_e\mu_e}{\rho_w\mu_w}\right)_s < 1$ . For  $\left(\frac{\rho_e\mu_e}{\rho_w\mu_w}\right)_s > 1$  the present results and those of reference 17 do not compare as favorably.

Because at the stagnation line of the yawed infinite cylinder moving with velocity  $V_{\infty}$  the local external properties are the same as for an unyawed cylinder at a velocity  $V_{\infty}$  cos  $\Lambda$ , equation (41) should be valid for velocities up to

$$V_{\infty} = \frac{29,000}{\cos \Lambda}$$
 feet per second.

The effect of nonunit Lewis number.—Before the solutions obtained herein for nonunit Lewis number are discussed, a review of the mechanisms for the transfer of energy in a reacting mixture of gases appears desirable.

At a point in the equilibrium binary boundary layer the heat flux normal to the surface is given by (ref. 5)

$$-q = k_f \frac{\partial T}{\partial z} + \rho D_{AM} (h_A - h_M) \left( \frac{\partial C_A}{\partial h} \right)_{p = Const.} \frac{\partial h}{\partial z}$$
 (43)

The first term on the right-hand side represents heat transfer by "ordinary" conduction (transfer of energy through collisions of particles) and the second term represents transfer of heat through mass diffusion of the reacting species. The first term may be put in terms of a static-enthalpy gradient (see ref. 5), which yields for the heat flux

$$-q = \frac{\mu}{N_{P\tau,f}} \left(\frac{\partial h}{\partial z}\right) \left[1 - (h_A - h_M) \left(\frac{\partial C_A}{\partial h}\right)_{p = Const.} + N_{Le}(h_A - h_M) \left(\frac{\partial C_A}{\partial h}\right)_{p = Const.}\right]$$
(44)

Now the first two terms in the brackets of equation (44) represent "ordinary" conduction while the third term represents heat transfer by mass diffusion. The two terms containing  $\left(\frac{\partial C_A}{\partial h}\right)_{p=Const.}$  are direct functions of the chemistry of the flow and the other term is comparable to the low-speed, perfect-gas result. Equation (44) may be written

$$-q = \frac{\mu}{N_{Pr,f}} \left( \frac{\partial h}{\partial z} \right) [1 + F(p,h)] \tag{45}$$

where F(p, h) is given by equation (6).

For equilibrium dissociated air,  $h_A - h_M > 0$  and  $\left(\frac{\partial C_A}{\partial h}\right)_{p=Const.} > 0$  for the simple binary model of reacting atoms and molecules. Thus, for  $N_{Le} > 1$ , F > 0, and for  $N_{Le} < 1$ , F < 0. For unit Lewis number (F=0), the two terms in equation (44) depending directly upon the concentration derivative, one arising from "ordinary" conduction and one representing mass diffusion, just cancel, and the heat-flux expression takes its low-speed form. When the Lewis number is locally greater than unity (F>0), the effect is to increase the heat flux in the boundary layer relative to the case for  $N_{Le}=1$ , whereas for Lewis number less than unity (F<0), the local effect is to decrease the heat transfer.

The effect of diffusion for constant values of  $N_{Le}$  of 1.4 and 2.0 was considered in reference 9 for axisymmetric stagnation flow, and it was found that the surface heat transfer was increased a significant amount relative to that for  $N_{Le}=1$ , because the function F was equal to or greater than zero throughout the boundary layer. A more realistic estimate of the Lewis number was given in reference 4 and varied from about 1.4 at low enthalpy to about 0.6 at the enthalpy for complete dissociation. In reference 5 it was surmised that the corresponding variation in F across the stagnation-point boundary layer (from F<0 at the edge to F>0 near the surface) would decrease the influence of nonunit Lewis number

from that given in reference 9. It was further estimated in reference 1 that for the diffusion function herein designated  $F_1$ , the effect of nonunit Lewis number would be to increase the stagnation-point heat transfer by at most about 6 percent.

The solutions presented herein (tables IV(a) and IV(b)) were obtained by using three different estimates for the diffusion function. The functions  $F_1$  and  $F_3$  represent the diffusion function for equilibrium dissociated air computed in two different ways, where the variable Lewis number as a function of enthalpy from reference 4 is used. The function  $F_1$  is computed from equation (6) and is given in table I of reference 5, while  $F_3$  is given by the relation  $F_3 = \frac{N_{Pr,f}}{N_{Pr,ef}} - 1$  (see table II of ref. 5).

These two functions show some similarities (fig. 9 of ref. 5) and are thought to represent the properties of air better than the function  $F_2$ , computed from equation (6) with  $N_{Le}=1.4$  (fig. 6 of ref. 5). In all cases considered herein (as well as the nonunit Lewis number cases of ref. 9), the surface enthalpy was sufficiently low that  $F_w=0$  (no diffusion at the surface). Thus the effect of F upon the surface heat-transfer rate is directly proportional to the effect on the derivative  $\zeta'_w$ ; these effects are dependent upon distortions of the enthalpy profiles in the boundary layer caused by the nonunit Lewis number diffusion function.

Because of the weak coupling between the energy and momentum equations, the effect of nonunit Lewis number upon skin friction was found in the present solutions to be negligible (at most a 1 percent effect upon  $f'_w$  and  $g'_w$ ), regardless of whether  $F_1$ ,  $F_2$ , or  $F_3$  was used. These results are not shown in the tables. Turning to the heat-transfer rate, for the axisymmetric stagnation point, the results obtained by using  $F_2$  agreed with those of reference 9 for  $N_{Le}=1.4$  and indicated an increase in heat-transfer rate reaching 15 percent for fully dissociated air  $\left(\frac{H_e}{h_E}=2, t_E=0.5\right)$ . Because the assumption of  $N_{Le}=1.4$  appears incorrect, the results obtained by using  $F_2$  are not considered further.

Plots of 
$$\frac{\zeta_w'(F)}{\zeta_w'(F=0)}$$
 for  $\beta=0$ , 1/2, and 1 and of  $\frac{\overline{r}(F)}{\overline{r}(F=0)}$  for  $\beta=0$  and 1 for  $t_e=t_s$  are shown in figures 7(a) and 7(b), respectively, for those cases computed with the diffusion functions  $F_1$  and  $F_3$ .

For the axisymmetric stagnation point problem  $\left(\beta = \frac{1}{2}\right)$ , the effect of nonunit Lewis number is within the limits

$$0.98 \lesssim \frac{q_{w,s}(F=F_1)}{q_{w,s}(F=0)} \lesssim 1.05$$

$$1.0 \lesssim \frac{q_{w,s}(F=F_3)}{q_{w,s}(F=0)} \lesssim 1.08$$
(46)

and because the Nusselt number is proportional to  $q_w/(1-\zeta_w)$ , the same relations hold for the Nusselt number function. The influence of the diffusion function upon  $\zeta_w'$  is very weakly a function of  $\beta$ , so that for the flat-plate  $(\beta=0)$  and for the yawed-infinite-cylinder stagnation line  $(\beta=1)$ , relations nearly equivalent to equations (46) are valid. In these latter cases, however, heat-transfer coefficients (e.g., Stanton and Nusselt numbers) are proportional to  $q_w/(\zeta_{aw}-\zeta_w)$ ,  $\zeta_{aw} \leq 1$ ,



Figure 7.—Effect of diffusion for nonunit Lewis number for equilibrium dissociated air.  $t_e = t_s$ .

so that the diffusion effect upon  $\overline{r}$  must be taken into account when the dissipation is large (when  $t_e \ll 1$ ). This dependence is roughly, for those cases computed,

$$0.93 \lesssim \frac{\overline{r}(F=F_1)}{\overline{r}(F=0)} \lesssim 1.06$$

$$0.92 \lesssim \frac{\overline{r}(F=F_3)}{\overline{r}(F=0)} \lesssim 1.0$$

$$(47)$$

approximately independent of  $\beta$ . Thus, when a heat-transfer coefficient is computed for highly cooled walls and large dissipation ( $\zeta_w \approx 0$ ,  $t_e \ll 1$ ), the coefficient is proportional roughly to  $q_w/\bar{r}$ . For those cases where both  $\zeta_w'$  and  $\bar{r}$  were computed by including nonunit Lewis number diffusion, the results are

$$0.97 \lesssim \frac{\frac{q_w}{\overline{r}} (F = F_1)}{\frac{q_w}{\overline{r}} (F = 0)} \lesssim 1.07$$

$$1.0 \lesssim \frac{\frac{q_w}{\overline{r}} (F = F_3)}{\frac{q_w}{\overline{r}} (F = 0)} \lesssim 1.10$$

$$(48)$$

The results contained in equations (46) to (48) confirm the estimates made in appendix A of reference 1 and support the assumption that the

effect of nonunit Lewis number diffusion may be neglected for equilibrium dissociated air with the transport properties as given in reference 4 and with walls sufficiently cold that no atoms diffuse to the surface. Based upon these results, the effect of nonunit Lewis number is neglected for the discussions that follow, except in the section extending the similar solutions to velocities above the nominal 29,000 feet per second limit for fully dissociated air, where a different method of expressing the gas properties is employed.

#### LOCALLY SIMILAR SOLUTIONS FOR THE HEAT-TRANSFER-DISTRIBUTION PARAMETER

To determine the heat-transfer distribution for a given configuration and inviscid flow requires the solution of equations (23) to (25), a system of three equations with four unknowns,  $q_w/q_{w,s}$ ,  $\Gamma$ ,  $\zeta'_w/\zeta'_{w,s}$ , and  $\beta$ . The fourth required relation, one between  $\zeta'_w/\zeta'_{w,s}$  and  $\beta$  is provided from the locally similar solutions of table III(a) (heat transfer, F=0). In general, the surface enthalpy derivative  $\zeta'_w$  may be written in functional form as

$$\zeta_{w}' = \zeta_{w}'(\beta, t_{s}, t_{e}, t_{E}, \zeta_{w}) \tag{49}$$

For a given blunt configuration with given inviscid flow and wall enthalpy, the distribution of the enthalpy gradient is given by

$$\frac{\zeta_w'}{\zeta_{w,s}'} = \frac{\zeta_w'(\beta, t_e, \zeta_w)}{\zeta_w'(\beta_s, t_e = t_s, \zeta_{w,s})}$$
(50)

at constant  $t_s$  and  $t_E$ . Equation (50) may be broken into a product of various factors representing the dependence of  $\zeta'_w/\zeta'_{w,s}$  on each of the parameters. Thus

$$\frac{\zeta'_{w}(\beta, t_{e}, \zeta_{w})}{\zeta'_{w}(\beta_{s}, t_{e} = t_{s}, \zeta_{w, s})} = \left[\frac{\zeta'_{w}(\beta, t_{e}, \zeta_{w})}{\zeta'_{w}(\beta = 1, t_{e}, \zeta_{w})}\right] \left[\frac{\zeta'_{w}(\beta = 1, t_{e}, \zeta_{w})}{\zeta'_{w}(\beta = 1, t_{e} = t_{s}, \zeta_{w})}\right] \left[\frac{\zeta'_{w}(\beta = 1, t_{e} = t_{s}, \zeta_{w})}{\zeta'_{w}(\beta = 1, t_{e} = t_{s}, \zeta_{w, s})}\right] \left[\frac{\zeta'_{w}(\beta = 1, t_{e} = t_{s}, \zeta_{w, s})}{\zeta'_{w}(\beta_{s}, t_{e} = t_{s}, \zeta_{w, s})}\right] \left[\frac{\zeta'_{w}(\beta = 1, t_{e} = t_{s}, \zeta_{w, s})}{\zeta'_{w}(\beta_{s}, t_{e} = t_{s}, \zeta_{w, s})}\right] \left[\frac{\zeta'_{w}(\beta = 1, t_{e} = t_{s}, \zeta_{w, s})}{\zeta'_{w}(\beta_{s}, t_{e} = t_{s}, \zeta_{w, s})}\right] \left[\frac{\zeta'_{w}(\beta = 1, t_{e} = t_{s}, \zeta_{w, s})}{\zeta'_{w}(\beta_{s}, t_{e} = t_{s}, \zeta_{w, s})}\right] \left[\frac{\zeta'_{w}(\beta = 1, t_{e} = t_{s}, \zeta_{w, s})}{\zeta'_{w}(\beta_{s}, t_{e} = t_{s}, \zeta_{w, s})}\right] \left[\frac{\zeta'_{w}(\beta = 1, t_{e} = t_{s}, \zeta_{w, s})}{\zeta'_{w}(\beta_{s}, t_{e} = t_{s}, \zeta_{w, s})}\right] \left[\frac{\zeta'_{w}(\beta = 1, t_{e} = t_{s}, \zeta_{w, s})}{\zeta'_{w}(\beta_{s}, t_{e} = t_{s}, \zeta_{w, s})}\right] \left[\frac{\zeta'_{w}(\beta = 1, t_{e} = t_{s}, \zeta_{w, s})}{\zeta'_{w}(\beta_{s}, t_{e} = t_{s}, \zeta_{w, s})}\right] \left[\frac{\zeta'_{w}(\beta = 1, t_{e} = t_{s}, \zeta_{w, s})}{\zeta'_{w}(\beta_{s}, t_{e} = t_{s}, \zeta_{w, s})}\right] \left[\frac{\zeta'_{w}(\beta = 1, t_{e} = t_{s}, \zeta_{w, s})}{\zeta'_{w}(\beta_{s}, t_{e} = t_{s}, \zeta_{w, s})}\right] \left[\frac{\zeta'_{w}(\beta = 1, t_{e} = t_{s}, \zeta_{w, s})}{\zeta'_{w}(\beta_{s}, t_{e} = t_{s}, \zeta_{w, s})}\right] \left[\frac{\zeta'_{w}(\beta = 1, t_{e} = t_{s}, \zeta_{w, s})}{\zeta'_{w}(\beta_{s}, t_{e} = t_{s}, \zeta_{w, s})}\right] \left[\frac{\zeta'_{w}(\beta = 1, t_{e} = t_{s}, \zeta_{w, s})}{\zeta'_{w}(\beta_{s}, t_{e} = t_{s}, \zeta_{w, s})}\right] \left[\frac{\zeta'_{w}(\beta = 1, t_{e} = t_{s}, \zeta_{w, s})}{\zeta'_{w}(\beta_{s}, t_{e} = t_{s}, \zeta_{w, s})}\right] \left[\frac{\zeta'_{w}(\beta = 1, t_{e} = t_{s}, \zeta_{w, s})}{\zeta'_{w}(\beta_{s}, t_{e} = t_{s}, \zeta_{w, s})}\right] \left[\frac{\zeta'_{w}(\beta = 1, t_{e} = t_{s}, \zeta_{w, s})}{\zeta'_{w}(\beta_{s}, t_{e} = t_{s}, \zeta_{w, s})}\right] \left[\frac{\zeta'_{w}(\beta = 1, t_{e} = t_{s}, \zeta_{w, s})}{\zeta'_{w}(\beta_{s}, t_{e} = t_{s}, \zeta_{w, s})}\right] \left[\frac{\zeta'_{w}(\beta = 1, t_{e} = t_{s}, \zeta_{w, s})}{\zeta'_{w}(\beta_{s}, t_{e} = t_{s}, \zeta_{w, s})}\right] \left[\frac{\zeta'_{w}(\beta = 1, t_{e} = t_{s}, \zeta_{w, s})}{\zeta'_{w}(\beta_{s}, t_{e} = t_{s}, \zeta_{w, s})}\right] \left[\frac{\zeta'_{w}(\beta = 1, t_{e} = t_{s}, \zeta_{w, s})}{\zeta'_{w}(\beta_{s}, t_{e} = t_{s}, \zeta_{w, s})}\right] \left[\frac{\zeta'_{w}(\beta = 1, t_{e} = t_{s}, \zeta_{w,$$

The first factor on the right-hand side of equation (51) represents the dependence of  $\zeta'_w/\zeta'_{w,s}$  upon  $\beta$ ; the second factor gives the effect of chordwise dissipation, the third factor represents the effect of a nonisothermal wall, and the fourth factor is merely the reciprocal of the first evaluated at the stagnation point or line. Detailed analysis of the numerical solutions indicated that each of these factors may be approximated by correlation formulas which are discussed separately in the following paragraphs.

The  $\beta$ -dependence.—The first factor of equation (51) was investigated first for the special case  $t_e = t_s$  (no chordwise dissipation). Plotted in figures 8(a) to 8(d) are the data from tables III(a) as functions of  $\beta$  for values of  $t_s$  of 1, 1/3, 1/10, and 1/30, and for various constant values of the parameters  $t_E$  and  $\zeta_w$ . For high enthalpy level (low  $t_E$ ) and highly cooled walls (low  $\zeta_w$ ), all the data correlate as a single curve for each  $t_s$  independent of  $t_E$  and  $\zeta_w$ . These data were fitted to a function of the same form as that of reference 1,



FIGURE 8.—Dependence of factor  $\frac{\zeta_w'(\beta, t_e = t_s, \zeta_w)}{\zeta_w'(\beta = 1, t_e = t_s, \zeta_w)}$  upon  $\beta$  for  $t_e = t_s$ . Equilibrium dissociated air.  $N_{Le} = 1$ .



FIGURE 8.—Concluded.

namely 
$$\frac{\zeta'_{w}(\beta, t_{e} = t_{s}, \zeta_{w})}{\zeta'_{w}(\beta = 1, t_{e} = t_{s}, \zeta_{w})} = \frac{1 + P\beta^{N}}{Q + R\beta^{N}}$$
 (52)

where the parameters P, Q, R, and N are functions of  $t_s$  as given in the following table:

$t_s$	P	Q	R	N
1	0. 527	1. 116	0. 411	0. 686
1/3	. 759	1. 193	. 566	. 677
1/10	1. 195	1. 344	. 851	. 629
1/30	1. 850	1. 558	1. 292	. 612

Note that R=1+P-Q. Solutions as  $\beta\to\infty$  were used to aid in determining these parameters. Equation (52) with the appropriate parameters P, Q, R, and N is valid independently of  $t_E$  and  $\zeta_w$  within about 5 percent for  $0.5 \lesssim \beta < \infty$  provided

that  $\frac{\zeta_w}{t_s} \lesssim 1.0$ . For  $0 \leq \beta \lesssim 0.5$ , the error may be slightly larger. This function is shown in figures 8(a) to 8(d). Plots of P, Q, and N against  $t_s$  for these conditions are given in figure 9 to aid in interpolation. The parameters P and Q plotted as smooth curves in figure 9, but because the choice of points through which to pass the correlating function (eq. (52)) was somewhat arbitrary, the parameter N plotted somewhat irregularly and is shown in figure 9 as a set of discrete points joined by straight lines. Equation (52) should not be sensitive to the value of N.

The effect of  $t_e < t_s$  upon the  $\beta$  dependence was next investigated. Shown in figures 10(a) to 10(d) are plots of the parameter  $\frac{\zeta_w'(\beta, t_c, \zeta_w)}{\zeta_w'(\beta=1, t_c, \zeta_w)}$  for various constant values of  $t_e$  in the range  $0.2 \le \frac{t_e}{t_s} < 1.0$  for constant values of  $t_E$  and  $\zeta_w$  and for  $t_s=1$ ,  $\frac{1}{3}$ ,  $\frac{1}{3}$ , and  $\frac{1}{3}$ . The correlation relation for  $t_e=t_s$  (eq. (52)) is also shown in these figures, and it is evident that an effect of chordwise dissipation appears in the  $\beta$  dependence. For zero yaw  $(t_s=1)$ , this effect is negligible, at least for  $0 \le \beta \le 3.5$ , but as  $t_s$  decreases, the data diverge from the  $t_e=t_s$  correlation function. It was found that these data could be correlated somewhat better by the modified function

$$\frac{\zeta_w'(\beta, t_e, \zeta_w)}{\zeta_w'(\beta=1, t_e, \zeta_w)} = \frac{\zeta_w'(\beta, t_e=t_s, \zeta_w)}{\zeta_w'(\beta=1, t_e=t_s, \zeta_w)}$$

$$\left[1 + 0.050(1 - t_s) \left(1 - \frac{t_e}{t_s}\right) \left(\frac{\beta - 1}{0.2\beta + 1}\right)\right] (53)$$

The form of the correction in brackets was chosen such that it was unity for zero yaw independent of  $t_{\epsilon}$  as the data seem to indicate. No numerical results for  $\beta \rightarrow \infty$  were available and the constants in the correction factor of equation (53) were determined solely from results in the range  $0 \le \beta \lesssim 3.5$ . The accuracy of this function is about 5 percent over this range except again near  $\beta = 0$ , where errors may reach 10 percent. Figure 11 illustrates the correlation for the case  $t_s = 0.1$ .

Although because of program difficulties it was not generally feasible to obtain locally similar solutions for  $\beta > 3.5$ , a few solutions were obtained for values of  $\beta$  to about 4 (these are not shown in the table) and no significant deviations from the correlation of equation (53) were found.



Figure 9.—Interpolation plots of parameters  $P,\ Q,\ {\rm and}\ N$  as a function of yaw parameter  $t_s$  for  $\frac{\zeta_w}{t_s} \lesssim 1$ .



Figure 10.—Dependence of factor  $\frac{\zeta_w'(\beta, t_c, \zeta_w)}{\zeta_w'(\beta=1, t_c, \zeta_w)}$  upon  $\beta$  f  $< t_c$ . Equilibrium dissociated air;  $N_{Lc}=1$ .



FIGURE 10.—Concluded.



Figure 11.—Typical result after elimination of  $\frac{t_e}{t_s} < 1$  effect from factor  $\frac{\zeta_w'(\beta, t_e, \zeta_w)}{\zeta_w'(\beta = 1, t_e, \zeta_w)}$ . Equilibrium dissociated air;  $N_{Le} = 1$ ;  $t_s = 0.1$ .

The final result for the first factor of equation (51) is then

$$\frac{\zeta_w'(\beta, t_e, \zeta_w)}{\zeta_w'(\beta=1, t_e, \zeta_w)} = \left(\frac{1+P\beta^N}{Q+R\beta^N}\right)$$

$$\left[1+0.050(1-t_s)\left(1-\frac{t_e}{t_s}\right)\left(\frac{\beta-1}{0.2\beta+1}\right)\right] (54)$$

valid for  $\frac{\zeta_w}{t_s} \lesssim 1$  but otherwise independent of  $t_E$  and  $\zeta_w$ . Equation (54) is accurate within about 5 percent for the range  $0.5 \leq \beta \lesssim 4$  except when  $t_e = t_s$ , where the same accuracy extends to infinite  $\beta$ . For the range  $0 \leq \beta < 0.5$ , accuracy is about 10 percent. Equation (54) may be accepted tentatively for  $\beta > 4$ ,  $t_e < t_s$ .

The effect of  $t_e$  at constant  $\beta$ .—The effect of  $t_e < t_s$  at constant  $\beta$  (equal to unity as required by the second factor on the right-hand side of eq. (51)) was determined from the numerical solutions as independent of  $t_s$ ,  $t_E$ , and  $\zeta_w$  when plotted as the ratio

$$\frac{\zeta_w'(\beta=1, t_e, \zeta_w)}{\zeta_{aw}(t_e) - \zeta_w} / \frac{\zeta_w'(\beta=1, t_e=t_s, \zeta_w)}{\zeta_{aw}(t_e=t_s) - \zeta_w}$$

with  $\bar{r}$  taken as a constant equal to 0.85 for convenience. All the available numerical data are shown plotted in this form against  $t_e/t_s$  in figure 12. Use of the exact recovery factor where possible instead of the nominal value of 0.85 reduced the scatter only slightly and because no convenient correlation formula or plot was found for  $\bar{r}$ , the correlation using the nominal value was considered to be satisfactory.

Shown also in figure 12 is the function

$$\frac{\frac{\zeta_{w}'(\beta=1, t_{e}, \zeta_{w})}{\zeta_{aw}(t_{e}) - \zeta_{w}}}{\frac{\zeta_{w}'(\beta=1, t_{e}=t_{s}, \zeta_{w})}{\zeta_{aw}(t_{e}=t_{s}) - \zeta_{w}}} = 1.1 - 0.1625 \frac{t_{e}}{t_{s}} + 0.0625 \left(\frac{t_{e}}{t_{s}}\right)^{2}$$
(55)

which correlates the data within about  $\pm 5$  percent. The second factor of equation (51) may be found from equation (55) as

$$\frac{\zeta_w'(\beta=1, t_e, \zeta_w)}{\zeta_w'(\beta=1, t_e=t_s, \zeta_w)} = \frac{0.85 + 0.15t_e - \zeta_w}{0.85 + 0.15t_s - \zeta_w}$$

$$\left[1.1 - 0.1625 \frac{t_e}{t_s} + 0.0625 \left(\frac{t_e}{t_s}\right)^2\right] (56)$$



FIGURE 12.—Dependence of the factor  $\frac{\zeta_w'(\beta=1,t_c,\zeta_w)}{\zeta_{aw}(t_c)-\zeta_w} / \frac{\zeta_w'(\beta=1,t_c=t_s,\zeta_w)}{\zeta_{aw}(t_c=t_s)-\zeta_w} \text{ upon } t_c/t_s.$ 

Correlations for the nonisothermal wall term.—Because the third factor of equation (51) is evaluated at  $\beta=1$  and  $t_c=t_s$ , the yawed infinite cylinder results (eq. (41)) provide a correlation. Equations (40) and (41) may be combined, the assumption again being made that  $\bar{r}=0.85$ , to yield the ratio

$$\frac{\zeta_w'(\beta=1, t_e=t_s, \zeta_w)}{\zeta_w'(\beta=1, t_e=t_s, \zeta_{w,s})} = \left(\frac{0.85+0.15t_s-\zeta_w}{0.85+0.15t_s-\zeta_{w,s}}\right) \left[\frac{N_{Pr,f,w}}{(N_{Pr,f,w})_s}\right]^{0.4} \frac{[\varphi(t_E, t=t_s, \zeta_w)]^{0.45 \text{ or } 0.67}}{[\varphi(t_E, t=t_s, \zeta_{w,s})]^{0.45 \text{ or } 0.67}}$$
(57)

where the values of  $\varphi$  are given by equation (31b) and the choice of exponents depends upon  $\varphi$  as in equation (41); that is, 0.45 for  $\varphi \leq 1$  and 0.67 for  $\varphi \geq 1$ . If the correlation is restricted to cases in which  $\frac{\zeta_w}{t_s} \leq 1$  (as for the other factors in eq. (51)), then from equation (31b)  $\varphi < 1$ , and equation (57) may be simplified, for  $\frac{\zeta_w}{t_s} \leq 1$ , to

$$\frac{\zeta_{w}'(\beta=1, t_{e}=t_{s}, \zeta_{w})}{\zeta_{w}'(\beta=1, t_{e}=t_{s}, \zeta_{w,s})} = \left(\frac{0.85+0.15t_{s}-\zeta_{w}}{0.85+0.15t_{s}-\zeta_{w,s}}\right) \left[\frac{N_{Pr, f, w}}{(N_{Pr, f, w})_{s}}\right]^{0.4} \left[\frac{1.0213 \left(\frac{\zeta_{w}}{t_{E}}\right)^{0.3329}-0.0213}{1.0213 \left(\frac{\zeta_{w,s}}{t_{E}}\right)^{0.3329}-0.0213}\right]^{0.45} \tag{58}$$

Relation for dependence of heat-transfer parameter  $\zeta'_w/\zeta'_w$ , upon  $\beta_s$ .—The fourth factor of equation (51) is merely the reciprocal of the first evaluated at  $\beta_s$ ,  $t_e=t_s$ , and  $\zeta_{w,s}$ . Using equation (52) (valid for  $\frac{\zeta_w}{t_s} \lesssim 1$ ) yields for axisymmetric flow  $(\beta_s = \frac{1}{2}, t_s = 1)$ , with  $\zeta_{w,s} \lesssim 1$ ,

$$\frac{\zeta_w'(\beta = 1, t_e = t_s = 1, \zeta_{w, s})}{\zeta_w'(\beta = \frac{1}{2}, t_e = t_s = 1, \zeta_{w, s})} = 1.033$$
(59)

For the yawed infinite cylinder  $\beta_s=1$  and the factor in question is unity independent of  $t_s$  and  $\zeta_w$ . A relation encompassing both of these cases is

$$\frac{\zeta_w'(\beta = 1, t_e = t_s, \zeta_w, s)}{\zeta_w'(\beta_s, t_e = t_s, \zeta_w, s)} = (1.033)^f$$
(60)

with j=0 for the yawed infinite cylinder and j=1 for a body of revolution.

Complete correlation formula for heat-transfer-distribution function.—The final result for the heat-transfer-distribution function  $\zeta'_w/\zeta'_w$ , is obtained by substituting equations (54), (56), (58), and (60) into equation (51), which yields

$$\begin{split} \frac{\zeta_{w}^{'}}{\zeta_{w,s}^{'}} &= (1.033)^{j} \left(\frac{1 + P\beta^{N}}{Q + R\beta^{N}}\right) \left[1 + 0.050(1 - t_{s}) \left(1 - \frac{t_{e}}{t_{s}}\right) \left(\frac{\beta - 1}{0.2\beta + 1}\right)\right] \left[1.1 - 0.1625 \frac{t_{e}}{t_{s}}\right] \\ &+ 0.0625 \left(\frac{t_{e}}{t_{s}}\right)^{2} \left[\left(\frac{0.85 + 0.15t_{e} - \zeta_{w}}{0.85 + 0.15t_{s} - \zeta_{w,s}}\right) \left[\frac{N_{Pr,f,w}}{(N_{Pr,f,w})_{s}}\right]^{0.4} \left[\frac{1.0213 \left(\frac{\zeta_{w}}{t_{E}}\right)^{0.3329} - 0.0213}{1.0213 \left(\frac{\zeta_{w,s}}{t_{E}}\right)^{0.3329} - 0.0213}\right]^{0.45} \end{split}$$
(61)

This equation is valid for the conditions  $\frac{\zeta_w}{t_s} \lesssim 1$  and  $\beta > 0$  but is otherwise independent of enthalpy level  $(t_E)$  and wall enthalpy  $(\zeta_w)$ . Equation (61) has a maximum possible error of about 15 percent compared with values obtained from locally similar solutions, and when used in conjunction with equations (23) to (25), completes the description of the laminar heat-transfer distribution on a blunt body of revolution or a yawed infinite cylinder.

Comparison with other solutions.—For a blunt body of revolution, the present correlation formula (eq. (61)) may be compared with that for equilibrium dissociated air with unit Lewis number from reference 2. The comparison is restricted here to the case with an isothermal wall with  $\xi_w \ll 1$  for convenience. If it is noted that  $\beta t_e$  of the present report is the  $\beta$  of reference 2 and that  $\xi \mu_o^2 L^2$  of the present report is  $\xi$  of reference 2, the heat-transfer distribution from the reference may be written in the present notation as

$$\frac{\left(\frac{q_w}{q_{w,s}}\right)_{ref.2}}{\frac{\rho_w \mu_w u_e r}{\mu_o L \sqrt{2\xi}} \left[2\rho_w \mu_w \left(\frac{du_e}{dx}\right)\right]_s^{-1/2} = \frac{1 + 0.096\sqrt{\beta t_e}}{1.068} \quad (62)$$

The equivalent expression for the present solutions is obtained from equations (9), (19), (23), (24),

and (61) (with 
$$\overline{\xi}=0$$
,  $t_s=1$ ,  $j=1$ ,  $F_w=0$ , and  $\zeta_w=\zeta_{w,s}\ll 1$ ) as

$$\frac{\frac{q_w}{q_{w.s}}}{\frac{\rho_w \mu_w u_e r}{\mu_o L \sqrt{2\xi}} \left[ 2\rho_w \mu_w \left(\frac{du_e}{dx}\right) \right]_s^{-1/2} = 1.033 \left(\frac{1 + 0.527 \beta^{0.686}}{1.116 + 0.411 \beta^{0.686}}\right) (0.85 + 0.15t_e) (1.10 - 0.1625t_e + 0.0625t_e^2)$$
(63)

Equation (62) was derived in reference 2 for values of  $\beta$  no larger than 2. Equation (63), on the other hand, is valid for all positive values of  $\beta$  if  $t_e=t_s$ . For  $t_e < t_s$ , equation (63) was derived by using numerical data for values of  $\beta$  up to 3.5 and is thought to be a reasonable approximation up to values of  $\beta$  of about 20. Equations (62) and (63) are compared in figure 13 for various

values of  $t_c$  over a range of  $\beta$  from 0 to 20. The two sets of curves show qualitative differences arising because of the character of the dependence upon  $\beta$ . Equation (62) (ref. 2) tends to infinity as  $\beta$  approaches infinity whereas the present result remains finite. For values of  $t_c$  of 1 and 0.6, this is seen in the divergence of the corresponding curves in figure 13 as  $\beta$  increases above 10.



'FIGURE 13.—Dependence of heat-transfer distribution function upon  $\beta$  and  $t_{\bullet}$  for a blunt body of revolution.  $\zeta_{w}=0$ .

However, for  $t_e$ =0.2, this divergence must occur at values of  $\beta$  larger than 20. In the range of  $\beta$  between 0 and 10, the two equations differ by at most 5 percent for  $t_e$ =0.2 and are in much better agreement for the larger values of  $t_e$ . The present correlation (eq. (63)) should provide a better representation of the numerical data than that of reference 2 (eq. (62)). However, over the range of  $\beta$  usually encountered (roughly that shown in fig. 13), the two equations will yield results very much in agreement.

The present correlations may also be compared with those for a perfect gas with  $\mu \propto T$  and unit Prandtl number from reference 1. For this comparison it is convenient to define a similarity heat-transfer coefficient  $\overline{h}$  as

$$\bar{h} = \frac{\zeta_w'}{\zeta_{aw} - \zeta_w} \tag{64}$$

Then, for a comparison of the present results with those of reference 1, it is necessary only to compare the ratios  $\overline{h}/\overline{h}_s$ . The comparison is here restricted to the yawed infinite cylinder with an isothermal wall. For the present correlations, from equations (61) and (64)

$$\begin{split} \frac{\overline{h}}{\overline{h}_{s}} = & \left(\frac{1 + P\beta^{N}}{Q + R\beta^{N}}\right) \left[1 + 0.050(1 - t_{s})\left(1 - \frac{t_{e}}{t_{s}}\right)\left(\frac{\beta - 1}{0.2\beta + 1}\right)\right] \\ & \left[1.1 - 0.1625\left(\frac{t_{e}}{t_{s}}\right) + 0.0625\left(\frac{t_{e}}{t_{s}}\right)^{2}\right] \quad (65) \end{split}$$

where  $\overline{r}$  is assumed equal to 0.85.

The corresponding expression from reference 1 is

$$\frac{\overline{h}}{\overline{h}_s} = \frac{1 + P_1 \beta^{N_1}}{Q_1 + R_1 \beta^{N_1}} \tag{66}$$

where  $P_1$ ,  $Q_1$ ,  $R_1$ , and  $N_1$  are given in the reference as functions of  $t_s$  and  $\zeta_w$ . The only qualitative difference in the form of equations (65) and (66) is caused by dissipation (excluded in the numerical solutions of reference 1 through the assumption that  $N_{Pr}=1$ ), that is, the terms proportional to  $(1-t_s)$  and  $t_e/t_s$  in equation (65). These effects are primarily functions of the deviation of the real-air frozen Prandtl number from unity and are not necessarily a result of dissociation.

Equations (65) and (66) are compared in figure 14(a)  $(t_s=1)$  and figure 14(b)  $(t_s=0.1)$  for the case  $\zeta_w=0$  in equation (66) (which satisfies the condition  $\frac{\zeta_w}{t_s} \lesssim 1$  required by equation (65) for all values of  $t_s$ ). For  $t_e=t_s=1$  in figure 14(a) (no dissipation), the effect of real-air properties is to increase the ratio  $\bar{h}/\bar{h}_s$  (compared with that for a perfect gas with  $N_{Pr}=1$ ) by a small amount, which increases with increasing  $\beta$  and reaches about 7 percent at  $\beta=20$ . The maximum difference, as  $\beta$ 



FIGURE 14.—Comparison of the similarity heat-transfer-coefficient ratio for the present solutions with that for a perfect gas with  $N_{Pr}=1$  and  $\mu \propto T$ .  $\zeta_{w}=0$ .

approaches infinity, is about 12 percent. For increasing chordwise dissipation (decreasing  $t_e/t_s$ ), the real-air curves depart farther from the perfect-gas curve, with a difference of as much as about 12 percent for  $\frac{t_e}{t_s}$ =0.2 at  $\beta$ =20. same trends are evident at large yaw ( $t_s = 0.1$ , fig. 14(b)), except that for no chordwise dissipation  $\left(\frac{t_e}{t_e}=1\right)$  the real-air and perfect-gas curves are extremely close (except for  $\beta=0$  where the difference is about 5 percent). A maximum difference of about 12 percent is predicted for infinite  $\beta$  with  $t_e = t_s = 0.1$ . For large chordwise dissipation  $\left(\frac{t_e}{t_s}\!\!=\!0.2\right)$  real-air effects are again relatively large; the real-air parameter  $\vec{h}/\vec{h}_s$ exceeds that for the  $N_{Pr}=1$  gas for this case by about 25 percent for  $\beta=20$ . Note that large  $\beta$ and  $\frac{t_e}{t_c} \lesssim 0.6$  will generally occur only in regions of relatively low heat-transfer rate.

For high-temperature flight conditions, the present solutions supersede the perfect-gas correlations of reference 1 so long as  $\frac{\zeta_w}{t_s} \lesssim 1$ . In situations where the wall is relatively hot and this condition is not met, the present correlations are not valid; in such cases the correlations of reference 1 should give reasonably accurate results judging from the comparison for the highly cooled wall in figures 14(a) and 14(b). However, the effect of dissipation has not been established for such cases.

# SIMILAR SOLUTIONS APPLICABLE AT HIGHER ENTHALPY LEVELS

Thus far, the similarity boundary-layer equations, and hence the solutions presented, have been restricted to a binary mixture of atoms and molecules, appropriate for dissociated air up to a nominal static enthalpy level  $\frac{h}{h_E}$ =2.0. These solutions are appropriate to flight velocities up to 29,000 feet per second for zero yaw, and to higher velocities with finite yaw. When the static enthalpy exceeds about  $2h_E$ , ionization becomes significant and the simplest representation of the air is that of a mixture of atoms, ions, and electrons. The binary-mixture assumption is no longer valid.

An alternate procedure for computing the boundary layer in such situations is to combine

the heat transfer by particle collisions with that from mass diffusion to form a so-called effective conductivity  $k_{eff}$ . (See refs. 4 and 5.) This approach is valid for multicomponent mixtures but restricted to chemical equilibrium (the present case). The effective Prandtl number is defined by

$$N_{P\tau,eff} = \frac{\mu c_{p,eff}}{k_{eff}}$$

where  $c_{p,ef}$  is the effective specific heat. In this way the diffusion terms are contained implicitly in the conduction terms and the boundary-layer equations take on their inert gas form. example, equations (16) to (18) are valid for an equilibrium multicomponent mixture if  $N_{Pt, f}$  is formally replaced by  $N_{Pr,ef}$  and if F is set equal to zero. This substitution is valid for all equations given previously for equilibrium dissociated air and generalizes them to account for an equilibrium mixture of more than two species. This approach was used to make a brief numerical computation in which appropriate transport properties were used to extend the present results to higher enthalpy levels. A description of the procedures follows. Thermal radiation is neglected.

## LOCALLY SIMILAR BOUNDARY-LAYER EQUATIONS IN TERMS OF EFFECTIVE PROPERTIES

The locally similar boundary-layer equations for an equilibrium multicomponent mixture are, from equations (26) to (28) and with the substitutions just discussed,

$$(\varphi f'')' + f f'' = \beta \left[ (f')^2 - \frac{\zeta}{t_s} + \left( \frac{1 - t_s}{t_s} \right) g^2 - \frac{t_e}{t_s} \left( \frac{\rho_e}{\rho} - \frac{t}{t_e} \right) \right]$$
(67)

$$(\varphi g')' + fg' = 0$$

$$\left(\frac{\varphi}{N_{Pr,eff}} \zeta'\right)' + f\zeta' = \left\{\varphi\left(\frac{1 - N_{Pr,eff}}{N_{Pr,eff}}\right)$$

$$\left[(t_s - t_e)(f')^{2'} + (1 - t_s)(g^2)'\right]\right\}'$$
(69)

with the boundary conditions of equations (29) and (30). The computation program on the IBM 704 electronic data processing machine for equilibrium dissociated air was used with  $F\equiv 0$  and with tables of the gas properties  $\rho_E\mu_E/\rho\mu$ ,  $\rho_E/\rho$ , and  $N_{Pr,ef}$  as functions of  $h/h_E$  appropriate for this case substituted for the properties used in the equilibrium dissociated air program.

The gas properties were obtained from reference 4 and plotted as functions of enthalpy at constant pressure. These results were found to correlate independent of pressure for the ranges

$$0.0152 \leq \frac{h}{h_R} \leq 4 \tag{70}$$

$$10^{-4} \le \frac{p}{p_{ref}} \le 10^2 \tag{71}$$

with reasonable accuracy. (See fig. 15.) The correlating functions (none of them conveniently expressed by an analytic function) were programed as tables, and the functions are shown in figures 15 (a), (b), and (c).

A group of locally similar solutions was obtained using this program for a range of  $\beta$  from zero to 3.5. The program was limited to heat-transfer cases, in most instances with no chordwise dissipation  $(t_c = t_s)$ . Values of  $t_s$  of 1, 1/3, 1/10, and 1/30 were employed, and the enthalpy level parameter  $t_E$  was restricted to  $t_E \ge 0.25$ , which corresponds to  $\frac{1}{t_E} = \frac{H_c}{h_E} \le 4$  and  $V_{\infty} \le 41,100$  feet per second. Lastly, the wall enthalpy range for this program was set as

$$0.0152 \le \frac{\zeta_w}{t_E} = \frac{h_w}{h_E} \le 0.45$$

corresponding to

$$300^{\circ} K \le T_{w} \lesssim \begin{cases} 3,600^{\circ} \text{ K for } \frac{p}{p_{ref}} = 10^{-4} \\ 5,200^{\circ} \text{ K for } \frac{p}{p_{ref}} = 10^{2} \end{cases}$$

#### DISCUSSION OF SIMILAR SOLUTIONS

Flat-plate flow.—Solutions for  $\beta=0$  were compared with results obtained by the reference enthalpy method of reference 13. For this case equations (35a), (35c), (36), and figures 15(b) and 15(c) were used with  $\overline{r}=\sqrt{0.7}$  in equation (35c) and with  $\overline{r}=\sqrt{N_{Pr,eJ}^*}$  in computing  $\zeta_{aw}$ . Approximate and exact results for  $c_f\sqrt{N_{Re}}$  again agreed within about 5 percent; however, no such good agreement was obtained for the Reynolds analogy factor, where discrepancies as large as 25 to 30 percent were evident. Although these comparisons are not presented, the following observations are of interest. The reason for the failure of the reference enthalpy method in computing the heat transfer lies in the extreme, nonmonotonic

variation of the effective Prandtl number with enthalpy. As can be seen from figure 15(c),  $N_{Pref}^*$  may be as large as 0.96 or as small as 0.28, and equation (36) can in no way account for the fact that a particular extreme value of  $N_{Pr,ef}^*$ is not necessarily representative of the effective Prandtl number throughout the boundary layer. The largest departures from the Reynolds analogy correlation occurred for  $N_{Pr,ef}^* \approx 0.9$ , whereas for  $N_{Pr,eff}^*$  from 0.5 to 0.8, agreement between exact and approximate Reynolds analogy factors was better (no cases were computed for which  $h^*$ was so large that  $N_{Pr,ef}^*$  approached 0.3). It may be that the reference enthalpy method might be modified through alteration of the constants in equation (35c) to improve its accuracy. This modification was not attempted. Because of the nonmonotonic behavior of  $N_{Pr,eff}^*$ , it appears unlikely that a single set of formulas like equations (35) and (36) would be sufficient, but instead different formulas covering different wall and stream conditions would be necessary.

Axisymmetric stagnation flow.—Solutions for  $t_s=t_c=1$ ,  $\beta=\frac{1}{2}$  were obtained and the Nusselt number function

$$\left[\frac{N_{Nu, w}}{(N_{Pr, eff, w})^{0.4}(N_{Re, w})^{0.5}}\right]_{s} = \sqrt{2} \frac{\zeta'_{w}}{1 - \zeta_{w}} \frac{1}{(N_{Pr, eff, w})^{0.4}}$$
(72)

was computed and plotted as a function of  $(\rho_c \mu_e/\rho_w \mu_w)_s$ . In this equation the Nusselt number is defined by the effective conductivity and specific heat. The results are shown in figure 16, where it is apparent that the correlation of equation (38) obtained for the lower speed range is no longer The discrepancy must be again attributed to the effective Prandtl number; in this case use of the surface Prandtl number in the correlation does not account for the extreme variation of local Prandtl number through the boundary layer. Use of the reference enthalpy of equation (35c) to obtain a correlating Prandtl number gave no improvement and this course was not pursued further. It was found, however, that the data could be correlated as a function of total enthalpy level. Shown in figure 17 are the data, where the parameter

$$\left[\frac{N_{Nu.\,w}}{0.767 \left(\frac{\rho_e \mu_e}{\rho_w \mu_w}\right)^{0.43} (N_{Pr,\,ef,\,w})^{0.4} (N_{Re,\,w})^{0.5}}\right]_s$$



(a) Density.

(b) Density-viscosity product.

FIGURE 15.—Correlations of density, density-viscosity product, and effective Prandtl number for air at enthalpies up to  $4h_E = 1,000\overline{R}T_{ref}$ .



#### (c) Effective Prandtl number.

FIGURE 15.-Concluded.



FIGURE 16.—Stagnation-point heat-transfer parameter as a function of  $\left(\frac{\rho_s \mu_s}{\rho_w \mu_w}\right)_s$  for a body of revolution at high enthalpy levels.

is plotted against  $\frac{1}{t_E} = \frac{H_e}{h_E}$ . The data correlate within about  $\pm 10$  percent and are adequately



FIGURE 17.—Stagnation-point heat-transfer correlating parameter as a function of enthalpy-level parameter for a body of revolution at high enthalpy levels.

represented by the function, for  $2 \le \frac{1}{t_E} \le 4$ ,

$$\left[ \frac{N_{Nu, w}}{0.767 \left( \frac{\rho_e \mu_e}{\rho_w \mu_w} \right)^{0.43} (N_{P_{\tau, eff, w}})^{0.4} (N_{Re, w})^{0.5}} \right]_{s} = 1 + 0.075 \left( \frac{1}{t_E} - 2 \right)^{2}$$
(73)

For  $\frac{1}{t_E}$ <2 (the region covered by the equilibrium-dissociated-air calculations), the numerical data

agree reasonably well with equation (38). More scatter is apparent in this lower enthalpy data than was present in the dissociated air calculation; this is attributed to the wider range of surface enthalpy used in the effective property program and also to the fact that for  $0.0152 \le \frac{1}{t_E} \le 2$  the effective property calculations are equivalent to the dissociated air calculations with  $F = F_3$ , not to F = 0 for which equation (38) was derived.

The correlations of equations (38) and (73) may be combined to yield a formula for the aerodynamic heat-transfer function covering the entire range of flight velocities to 41,100 feet per second  $(t_E \ge 0.25)$ . This is

$$\left[\frac{N_{Nu, w}}{(N_{Pr, ef, w})^{0.4}(N_{Re, w})^{0.5}}\right]_{s} = 0.767 \left(\frac{\rho_{e}\mu_{e}}{\rho_{w}\mu_{w}}\right)_{s}^{0.43} G_{1}(t_{E})$$
(74)

where for  $0.5 \leq t_E$ ,

$$G_1(t_E) = 1$$
 (75a)

and for  $0.25 \le t_E \le 0.5$ ,

$$G_1(t_E) = 1 + 0.075 \left(\frac{1}{t_E} - 2\right)^2$$
 (75b)

which are valid for the stagnation point of a body of revolution at zero angle of attack within about  $\pm 10$  percent.

From equation (74), together with the definitions of the Nusselt, Reynolds, and Prandtl numbers and the assumption of a Newtonian stagnation velocity gradient, a heat-transfer coefficient may be derived as

$$\frac{-q_{w,s}\sqrt{r_N}}{(H_e - h_w)_s} = 0.767(N_{Pr,eff,w})_s^{-0.6}(\rho_e \mu_e)_s^{0.43}(\rho_w \mu_w)_s^{0.07} \left(2\frac{p_e}{\rho_e}\right)_s^{1/4} G_1(t_E)$$
(76)

Equation (76) was evaluated for a range of velocities and altitudes of interest and the results are shown in figure 18. Argon-free air was assumed and the thermodynamic properties were taken from reference 18. Normal-shock relations were obtained from unpublished work of Paul W. Huber of the Langley Research Center for argonfree air. These data parallel the data provided by Huber in reference 19 but employ the 1959 ARDC atmosphere (ref. 20) rather than the 1956 atmosphere. Effective transport properties were taken from reference 4. In figure 18(a) the heattransfer coefficient is plotted against velocity for various altitudes. The circles represent the results of equation (76) for wall temperatures ranging from 300° K to 3,600° K and the results are essentially independent of this parameter. The curves represent a rough correlating plot for each altitude. Because interpolation to intermediate altitudes is awkward, a cross plot of the curves, as shown in figure 18(b), may be used to obtain an engineering approximation for the computation of the stagnation point heat-transfer coefficient. Interpolation to intermediate velocities and altitudes is straightforward.

Stagnation flow for yawed infinite cylinder.— The stagnation-line local enthalpy outside the boundary layer is related to the free-stream total enthalpy by

$$h_s = t_s H_s$$

and in the present effective-property program, only at zero yaw was any effect of the highenthalpy effective properties apparent. For  $t_s$ =  $\frac{1}{3}$ ,  $\frac{1}{10}$ , and  $\frac{1}{30}$ ,  $t_s$  was always less than  $2t_E$  and nowhere in the highly cooled boundary layer did the static enthalpy exceed the nominal maximum enthalpy for equilibrium dissociated air. Thus for these cases (with  $t_s = t_e < 1$ ,  $\beta = 1$ ) the results agreed with equation (41) which used  $\bar{r}=0.85$ . For zero yaw, a correction factor equal to  $G_1(t_E)$ must be applied to equation (41) as in the axisymmetric case. Because the stagnation-line local external properties for a yawed infinite cylinder with free-stream stagnation enthalpy  $H_e$  are equivalent to those for another cylinder at zero yaw with a lower stagnation enthalpy equal to  $h_s$ , the high-enthalpy correction factor may be generalized for arbitrary yaw by substituting  $t_s/t_E$ for  $1/t_E$ . Thus, the correlating function for the



(a) Heat transfer plotted against velocity at various altitudes.

FIGURE 18.—Stagnation-point heat-transfer coefficient for a body of revolution.

Nusselt number parameter is, when  $\left(\frac{\rho_e\mu_e}{\rho_w\mu_w}\right)_s$ <1,

$$\left[\frac{N_{Nu, w}}{(N_{Pr, ef, w})^{0.4}(N_{Re, w})^{0.5}}\right]_{s} = 0.57 \left(\frac{\rho_{e}\mu_{e}}{\rho_{w}\mu_{w}}\right)_{s}^{0.45} G_{1}\left(\frac{t_{E}}{t_{s}}\right)$$
(77a)

and when  $\left(\frac{\rho_e\mu_e}{\rho_w\mu_w}\right)_s>1$ 

$$\left[\frac{N_{Nu, w}}{(N_{Pr, ef, w})^{0.4}(N_{Re, w})^{0.5}}\right]_{s} = 0.57 \left(\frac{\rho_{e}\mu_{e}}{\rho_{w}\mu_{w}}\right)_{s}^{0.67} G_{1}\left(\frac{t_{E}}{t_{s}}\right)$$
(77b)

where, for  $0.5 \le \frac{t_E}{t_s}$ ,

$$G_{i}\left(\frac{t_{E}}{t_{s}}\right) = 1 \tag{78a}$$

and for  $0.25 \le \frac{t_E}{t_0} \le 0.5$ ,

$$G_1\left(\frac{t_E}{t_s}\right) = 1 + 0.075 \left(\frac{t_s}{t_E} - 2\right)^2 \tag{78b}$$

For large yaw the results are valid to velocities in excess of 41,100 feet per second so long as  $V_{\infty}$  cos  $\Lambda \lesssim 41,100$  feet per second.

For the case  $\frac{\zeta_{v}}{t_{s}} \lesssim 1 \left[ \left( \frac{\rho_{e}\mu_{e}}{\rho_{w}\mu_{w}} \right)_{s} \lesssim 1 \right]$ , the plots in figures 18(a) and 18(b) may be used to give approximate yawed-cylinder stagnation-line heattransfer coefficients if  $V_{\infty} \cos \Lambda$  is substituted for  $V_{\infty}$ ,  $h_{aw}$  is substituted for  $H_e$  in the coefficient, and if the heat-transfer coefficient is multiplied by  $\frac{0.57}{0.767}$ =0.743. At values of velocity and yaw angle such that  $V_{\infty} \cos \Lambda$  is less than 29,000 feet per second, the use of  $\bar{r}=0.85$  should give satisfactory results but at higher velocities this assumption may require modification. However, for  $\frac{\zeta_w}{t_s} > 1 \left[ \left( \frac{\rho_e \mu_e}{\rho_w \mu_w} \right)_s > 1 \right]$ , figures 18(a) and 18(b) should not be used for the yawed cylinder unless an additional correction to account for the difference in the exponents of the  $\left(\frac{\rho_e\mu_e}{\rho_w\mu_w}\right)_s$  factor in equations (74) and (77) is inserted.

The heat-transfer-distribution parameter.—The effect of  $\beta$  upon the parameter  $\frac{\zeta'_w(\beta, t_e = t_s, \zeta_w)}{\zeta'_w(\beta = 1, t_e = t_s, \zeta_w)}$  was investigated for a range of  $\beta$  from zero to 3.5



(b) Heat transfer plotted against altitude for various velocities.

FIGURE 18.—Concluded.

and, for  $t_e = t_s$ , the numerical data were found to be correlated by the same relation as for equilibrium dissociated air, namely by equation (52) with the same values for the parameters P, Q, R, and N. The few solutions obtained for  $t_e < t_s$ indicated reasonably good agreement with equation (54) but did not correlate too well with equation (56). The discrepancy was such that use of a lower value of  $\bar{r}$  in equation (55) would have accounted for the difference. At very high enthalpy levels the recovery factor would be expected to be lower than 0.85 because of the lower effective Prandtl numbers. If the appropriate values of  $\bar{r}$  were known, equation (55) might well be applicable, but because no insulated wall solutions were made in the present program this knowledge is not available. It is suggested that equation (56) be used without modification,

inasmuch as, at worst, slightly conservative results will be obtained at very high enthalpy levels. The same comment is appropriate for the recovery factor as it appears in the nonisothermal wall term, equations (57) and (58). Furthermore, so long as the wall enthalpy is such that the condition

 $\frac{\zeta_w}{t_s} \lesssim 1$  (required for the validity of the correlations) is met, no modification of the  $\varphi$  term in equations (57) and (58) is necessary. As a result, equation (61) may be applied to this very high enthalpy case.

# SUMMARY OF EQUATIONS FOR HEAT-TRANSFER CALCULATIONS

For convenience, the correlations obtained from the numerical solutions reported herein are listed in the following sections.

#### FLAT-PLATE FLOW

The flat-plate skin-friction coefficient is (eq. (35a))

$$c_f \sqrt{N_{Re}} = 0.664 \sqrt{\frac{\rho^* \mu^*}{\rho_e \mu_e}}$$

and is valid within about 5 percent for velocities up to 41,100 feet per second. The heat-transfer coefficient is (eq. (36))

$$\frac{N_{St}}{c_f} = \frac{1}{2} (N_{Pr,f}^*)^{-2/3}$$

and is valid within about 4 percent up to a velocity of 29,000 feet per second. The properties  $\rho^*\mu^*/\rho_e\mu_e$  and  $N^*_{Pr,f}$  are evaluated at  $h^*$ , which is given by equation (35c) as

$$\frac{h^*}{h_E} = \frac{t^*}{t_E} = \frac{t_e}{t_E} \left[ 0.5 \left( 1 + \frac{\zeta_w}{t_e} \right) - 0.184 \left( 1 - \frac{1}{t_e} \right) \right]$$

For  $\frac{h^*}{h_E} \leq 2.0$ ,  $\frac{\rho^* \mu^*}{\rho_e \mu_e}$  is, according to equation (35b),

$$\frac{\rho^* \mu^*}{\rho_e \mu_e} = \frac{1.0213 \left(\frac{t_e}{t_E}\right)^{0.3329} - 0.0213}{1.0213 \left(\frac{t^*}{t_E}\right)^{0.3329} - 0.0213}$$

and  $N_{Pr,f}^*$  is given in table I.

For  $\frac{h}{h_E} > 2.0$ ,  $\frac{\rho^* \mu^*}{\rho_e \mu_e}$  must be computed from the correlation of figure 15(b) and the relation

$$\frac{\rho^*\mu^*}{\rho_e\mu_e} = \frac{\left(\frac{\rho_E\mu_E}{\rho_e\mu_e}\right)}{\left(\frac{\rho_E\mu_E}{\rho^*\mu^*}\right)}$$

Because equation (36) is not valid for velocities in excess of 29,000 feet per second, there is no necessity to evaluate  $N_{Pr,f}^*$  for  $\frac{h^*}{h_r} > 2.0$ .

#### AXISYMMETRIC STAGNATION FLOW

The heat-transfer rate for axisymmetric stagnation flow is given (from eq. (74) and the definition

of the Nusselt number) by the relation

$$-q_{w,s} = 0.767 (N_{Pr,w})_s^{-0.6} (H_e - h_w)_s$$

$$(\rho_e \mu_e)_s^{0.43} (\rho_w \mu_w)_s^{0.07} \sqrt{\left(\frac{du_e}{dx}\right)_s} G_1(t_E)$$
 (79)

where, for velocities up to 29,000 feet per second  $(t_E \ge 0.5)$ ,

$$\begin{cases}
N_{Pr, w} = N_{Pr, f, w} \\
G_1(t_E) = 1
\end{cases}$$
(80)

and for velocities from 29,000 to 41,100 feet per second  $(0.25 \le t_E \le 0.5)$ ,

$$N_{Pr, w} = N_{Pr, ef, w}$$

$$G_1(t_E) = 1 + 0.075 \left(\frac{1}{t_E} - 2\right)^2$$
(81)

Equations (79) and (80) were developed from numerical data for wall temperatures from 300° K to about 1,750° K in the lower velocity range where they represent the data within about 5 percent. For the high-velocity range, the maximum wall temperatures permitted ranged from 3,600° K to 5,200° K, and equations (79) and (81) represent the numerical data within about 10 percent. Plots of the coefficient  $\frac{-q_{w,s}\sqrt{r_N}}{(H_e-h_w)_s}$  for axisymmetric stagnation flow as functions of velocity and altitude are given in figures 18(a)

#### STAGNATION FLOW FOR YAWED INFINITE CYLINDER

and 18(b) for a Newtonian stagnation-point

The yawed-infinite-cylinder stagnation-line heat transfer may be expressed, from equation (77), and the definition of the Nusselt number, as

$$-q_{w,s} = 0.57 (N_{Pr,w})_s^{-0.6} (h_{aw} - h_w)_s$$

$$(\rho_e \mu_e)_s^m (\rho_w \mu_w)_s^{1/2 - m} \sqrt{\frac{du_e}{dx}}_s G_1\left(\frac{t_E}{t_s}\right) \quad (82)$$

where

velocity gradient.

$$h_{aw} = h_e + 0.85 \left(\frac{u_e^2 + v_e^2}{2}\right)$$
 (83)

and  $(N_{P_7, w})_s$ , m, and  $G_1(t_E/t_s)$  are given in the following table:

V _∞ cos Λ, fps	$\frac{t_B}{t_*}$	<u>ζω</u> t.	$\left(\frac{\rho  \epsilon \mu  \epsilon}{\rho  \omega \mu  \omega}\right)_{s}$	(N _{Pr} , w):	m	$G_1\left(\frac{t_B}{t_s}\right)$	Tu, mer,
≦29,000 ≦29,000 ≦41,100	≧0.5 ≥1.5 ≥1.25	≦! >1 ≦1	≦1 >1 ≤1	Frozen Frozen Effective	0. 45 . 67 . 45	$\begin{bmatrix} 1 \\ 1 \\ 1+0.075 \left(\frac{t_s}{t}-2\right)^2 \end{bmatrix}$	1,750 1,750 3,600 to 5,200
$>29,000$ $\le 41,100$ $>29,000$	<.5 ≥.25 <.5	>1	>1	Effective	. 67	$\begin{vmatrix} t_B \\ 1 + 0.075 \left( \frac{t_s}{t_B} - 2 \right)^2 \end{vmatrix}$	3,600 to 5,200

The maximum error inherent in equation (82) is about 10 percent.

#### HEAT-TRANSFER-DISTRIBUTION PARAMETER

The heat-transfer distribution on blunt yawed cylinders and bodies of revolution at zero angle of attack may be computed from equations (23) to (25) and the correlation equation (eq. (61))

$$\begin{split} \frac{\zeta_w'}{\zeta_{w,\,s}'} = & (1.033)^j \left(\frac{1 + P\beta^N}{Q + R\beta^N}\right) \left[1 + 0.050(1 - t_s) \left(1 - \frac{t_e}{t_s}\right) \left(\frac{\beta - 1}{0.2\beta + 1}\right)\right] \left[1.1 - 0.1625 \, \frac{t_e}{t_s} + 0.0625 \left(\frac{t_e}{t_s}\right)^2\right] \\ & \left(\frac{0.85 + 0.15t_e - \zeta_w}{0.85 + 0.15t_s - \zeta_{w,\,s}}\right) \left[\frac{N_{Pr,\,f,\,w}}{(N_{Pr,\,f,\,w})_s}\right]^{0.4} \left[\frac{1.0213 \left(\frac{\zeta_w}{t_E}\right)^{0.3329} - 0.0213}{1.0213 \left(\frac{\zeta_w}{t_E}\right)^{0.3329} - 0.0213}\right]^{0.45} \end{split}$$

which is valid for  $V_{\infty}$  cos  $\Lambda \leq 29{,}000$  feet per second,  $\frac{\zeta_w}{t_s} \lesssim 1$ , and  $0 \leq \beta \lesssim 4$  and represents numerical data within 15 percent. Extension to larger values of  $\beta$  should not introduce significant additional error. Values of P, Q, and N are plotted in figure 9 and R=1+P-Q. Lastly, for 29,000 feet per second  $< V_{\infty}$  cos  $\Lambda \leq 41{,}100$  feet per second, equation (61) should give reasonable, although somewhat conservative, results.

#### DISCUSSION

#### VALIDITY OF ASSUMPTION OF CHEMICAL EQUILIBRIUM

Although the present calculations are restricted to the case of chemical equilibrium, the results for dissociated air,  $\frac{h}{h_E} \leq 2$ , should be useful for nonequilibrium situations provided that the wall is catalytic and that the flow outside the boundary layer is in equilibrium. This conclusion follows from the results for dissociated air with arbitrary recombination rates in reference 9. Even for a nonequilibrium external flow, it is believed that the heat transfer will be little influenced by finite rate processes so long as equilibrium concentrations exist at the surface.

Those results computed herein for the higher enthalpy levels characterized by significant ioni-

zation, however, may very possibly not be independent of reaction rates for catalytic walls. The reason is that for nonequilibrium chemistry. diffusion of electrons and ions may tend to set up significant electric and magnetic fields which can no longer be neglected in the boundary-layer equations. The equilibrium assumption, on the other hand, requires a gas electrically neutral at every point by definition, and therefore the inclusion of these terms is unnecessary. It is of interest that calculations of the stagnation-point heat transfer at velocities to above 40,000 feet per second in reference 21 for frozen chemistry agree substantially with the present results, but in reference 21 the electrical terms were neglected. If it is found that charge separation is negligible when recombination rates are low, the present results may then be used to give reasonably accurate predictions for the nonequilibrium case (provided again that the walls are catalytic). These aspects of aerodynamic heating at velocities characteristic of lunar and planetary reentries warrant further study.

## UNCERTAINTY IN TRANSPORT-PROPERTY APPROXIMATIONS OF REFERENCE 4

The transport property values of reference 4 are admittedly only approximations, but should

be reasonable for equilibrium dissociated air. It has been shown here that the stagnation point Nusselt number function for this case is a very weak function of the transport properties. Furthermora, calculations of the stagnation-point heat-transfer rate from equation (39) and the transport properties of reference 4 generally agree with the large body of experimental data available about as well as do calculations obtained by the widely used formula of reference 9 in which the Sutherland viscosity relation and  $N_{Le}=1.4$  (a nominal constant) are used. Also, heat-transfer distribution will normally be a very weak function of transport properties as illustrated in figures 13 and 14. On this basis, the transport properties of reference 4 may be accepted for heattransfer calculations for equilibrium dissociated air.

For the case with appreciable ionization characterized by the enthalpy range  $2 \lesssim \frac{h}{h_E} \lesssim 4$ , the uncertainty in the validity of the transport properties is greater. The present solutions in this range indicate somewhat greater dependence upon the transport properties than in the dissociated air range, particularly upon the behavior of the effective Prandtl number. Further comment must await experimental or more advanced theoretical efforts in this enthalpy range.

## APPLICATION OF THE PRESENT RESULTS TO THREE-DIMENSIONAL FLOWS

The application of the heat-transfer results for a body of revolution to three-dimensional flows with small cross flow is discussed thoroughly in references 3, 6, 7, and 8. The present results may be applied to such problems by replacing r/L in equation (25) by the inviscid streamline spacing at the surface and by integrating this equation along the inviscid surface streamlines. The correlation formula for  $\zeta'_w/\zeta'_{w,s}$  (eq. (61)) is applied for  $t_s=1$  and the factor (1.033)^f in this equation is replaced by the factor

$$\frac{\zeta_w'(\beta=1,t_e=1,\zeta_{w,s})}{\zeta_w'(\beta_s,t_e=1,\zeta_{w,s})} = \frac{1.116+0.411\beta_s^{0.686}}{1+0.527\beta_s^{0.686}}$$

which is the inverse of equation (52) for  $t_s=1$  applied at  $\beta_s$ . The stagnation value of  $\beta$  (that is,  $\beta_s$ ) may be computed from the method in reference 8. The stagnation point heat-transfer function is determined by applying the perfect-gas method of reference 22 to the present results.

#### CONCLUDING REMARKS

Locally similar solutions of the laminar boundary-layer equations have been obtained for air at chemical equilibrium at static enthalpies from  $3.8\overline{R}T_{ref}$  (corresponding to a temperature of 300° K) to  $1,000\overline{R}T_{ref}$  (corresponding to a temperature of from about 8,500° K to about 15,000° K, depending upon pressure level), where  $\overline{R}$  is the gas constant for undissociated air and  $T_{ref}$  is 273.16° K. The upper enthalpy limit corresponds to the free-stream stagnation enthalpy for atmospheric flight at a velocity of about 41,100 feet per second. For the range of enthalpy up to  $500\overline{R}T_{ref}$ , which was herein treated extensively, the air was assumed to be an equilibrium mixture of atoms and molecules (equilibrium dissociated air), and the frozen transport properties were taken from the correlations of NASA TN D-194. The upper limit in this enthalpy range corresponds to flight at 29,000 feet per second. For the higher enthalpy range, treated in less detail, the air was assumed to be an equilibrium mixture of atoms, ions, and electrons, and the effective transport properties of NASA TR R-50 were employed.

Exact solutions for flat-plate flow, axisymmetric stagnation flow, and stagnation flow for a yawed infinite cylinder were obtained for equilibrium dissociated air with unit Lewis number. For the flat plate the well-known reference enthalpy approximation gave excellent agreement with the exact solutions. Correlations for the stagnationflow Nusselt number parameter were determined and found to be little different from previous results obtained by using other estimates of the thermodynamic and transport properties for air. It was shown, however, that the absolute heattransfer rate would depend more strongly upon the air properties. The effect of nonunit Lewis number was found to be negligible for the enthalpy range characteristic of equilibrium dissociated air.

Locally similar solutions for equilibrium dissociated air were employed to determine a correlating expression for the function used in computing the heat-transfer distribution on a body of revolution at zero angle of attack or on a yawed infinite cylinder with arbitrary favorable pressure gradient. Application of this correlation to the integral and simple local similarity methods of NASA TN D-625 was described. Comparison of this function with previous results based on different gas

property assumptions indicated moderate dependence upon the assumed Prandtl number, although the strongest effect occurred for conditions where the heat transfer would be relatively low

For the enthalpy range where ionization is important (above  $500\overline{R}T_{ref}$ ) a small group of locally similar solutions was obtained. It was found that the flat-plate and stagnation-flow heat-transfer results were as much as 30 percent higher than a simple extrapolation of the results for equilibrium dissociated air. This behavior is attributed to the low effective Prandtl number predicted in NASA TR R-50 at such high enthalpies. A modified correlation formula to take these results into account for the stagnation

point was found and a graph of a stagnation-point heat-transfer function was plotted as a function of flight velocity and altitude. It was also found that the heat-transfer-distribution correlation formula found for equilibrium dissociated air was useful at the higher enthalpy range. A summary of equations for computing heat transfer is included.

Adaptation of the present results to the computation of heat-transfer distribution for three-dimensional flows with small cross flows was briefly described.

LANGLEY RESEARCH CENTER,

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION, LANGLEY AIR FORCE BASE, VA., May 22, 1961.

#### APPENDIX

#### SIMILARITY BOUNDARY-LAYER FUNCTIONS FOR EQUILIBRIUM DISSOCIATED AIR

#### BOUNDARY-LAYER-THICKNESS FUNCTIONS

The boundary-layer integral equations for equilibrium dissociated air may be obtained from equations (16) to (18). First it is convenient to change the form of equation (16) by substitution for the term  $t/t_e$  from equation (20). The result is

$$\begin{split} \frac{\partial}{\partial \eta} \left( \varphi \, \frac{\partial^2 f}{\partial \eta^2} \right) + \left( 1 - \frac{d\overline{\xi}}{d\xi} \right) f \, \frac{\partial^2 f}{\partial \eta^2} &= \beta \, \frac{t_e}{t_s} \left[ \left( \frac{\partial f}{\partial \eta} \right)^2 - \frac{\rho_e}{\rho} \right] \\ + 2 (\xi - \overline{\xi}) \left( \frac{\partial f}{\partial \eta} \, \frac{\partial^2 f}{\partial \eta \partial \xi} - \frac{\partial f}{\partial \xi} \, \frac{\partial^2 f}{\partial \eta^2} \right) \end{split} \quad (A1)$$

The similarity form of equation (A1) could also have been employed in place of equation (26) in obtaining locally similar solutions. Equations (A1), (17), and (18) are multiplied by  $d\eta$  and integrated across the boundary layer from  $\eta = 0$  to  $\eta \to \infty$  using boundary conditions (21) and (22). The results are

$$\frac{d}{d\xi} \left[ \sqrt{\xi - \bar{\xi}} (\theta_{tr}^*) \right] = \frac{1}{2\sqrt{\xi - \bar{\xi}}} \left[ \left( \frac{\partial^2 f}{\partial \eta^{\bar{2}}} \right)_w - \beta \frac{t_e}{t_s} (\Delta_{tr}^* + \theta_{tr}^*) \right]$$
(A2)

$$\frac{d}{d\xi} \left[ \sqrt{\xi - \overline{\xi}} (E_{tr}) \right] = \frac{1}{2\sqrt{\xi - \overline{\xi}}} \left( \frac{\partial g}{\partial \eta} \right)_w \tag{A3}$$

$$\frac{d}{d\xi} \left[ \sqrt{\xi - \overline{\xi}} (1 - \zeta_w) \Theta_{tr} \right] = \frac{1}{2\sqrt{\xi - \overline{\xi}}} \left( \frac{1 + F_w}{N_{Pr,f,w}} \right) \left( \frac{\partial \xi}{\partial \eta} \right)_w$$
(A4)

where

$$\theta_{tr}^* = \int_0^\infty \frac{\partial f}{\partial \eta} \left( 1 - \frac{\partial f}{\partial \eta} \right) d\eta \tag{A5}$$

$$\Delta_{t\tau}^* = \int_0^\infty \left(\frac{\rho_e}{\rho} - \frac{\partial f}{\partial \eta}\right) d\eta \tag{A6}$$

$$E_{tr} = \int_0^\infty \frac{\partial f}{\partial \eta} (1 - g) d\eta \tag{A7}$$

$$\Theta_{tr} = \int_{0}^{\infty} \frac{\partial f}{\partial \eta} \left( \frac{1 - \zeta}{1 - \zeta_{tr}} \right) d\eta \tag{A8}$$

Equations (A2) to (A4) are general within the boundary-layer assumptions and the assumption of an equilibrium binary mixture. Although these equations are cast in the similarity coordinate system, no assumption of local similarity is as yet implied.

For locally similar profiles, equations (A2) to (A4) reduce to

$$\theta_{t\tau}^* = f_w^{\prime\prime} - \beta \frac{t_e}{t_s} \left( \Delta_{t\tau}^* + \theta_{t\tau}^* \right) \tag{A9}$$

$$E_{tt} = g_w' \tag{A10}$$

$$\Theta_{t\tau} = \frac{1 + F_w}{N_{P\tau, f, w}} \frac{\zeta_w'}{1 - \zeta_w} \tag{A11}$$

In table III(a), listings of the results of the similar solutions include  $f''_w$ ,  $g'_w$ ,  $\xi'_w$ , and  $\Delta^*_{tr}$ . The thicknesses  $\theta^*_{tr}$ ,  $E_{tr}$ , and  $\Theta_{tr}$  are not listed, but may be computed from equations (A9) to (A11).

Note that for a perfect gas with constant specific heats,  $\Delta_t^*$ , may be written in terms of other parameters as follows: Since for this special case  $\frac{\rho_e}{\rho} = \frac{t}{t_e}$ , then

$$\begin{split} \Delta_{tr}^* &= \int_0^\infty \left(\frac{t}{t_e} - \frac{\partial f}{\partial \eta}\right) d\eta \\ &= \int_0^\infty \left(1 - \frac{\partial f}{\partial \eta}\right) d\eta - \int_0^\infty \left(1 - \frac{t}{t_e}\right) d\eta \end{split}$$

and using equation (20) and rearranging gives

$$\Delta_{t_r}^* = \frac{t_s}{t_e} \, \delta_{t_r}^* + \frac{t_s - t_e}{t_e} \, \theta_{t_r}^* - \frac{1 - \zeta_w}{t_e} \, \Theta_{t_r}^* + \frac{1 - t_s}{t_e} \, G_{t_r} \quad (A12)$$

where

$$\delta_{tr}^* = \int_0^\infty \left( 1 - \frac{\partial f}{\partial \eta} \right) d\eta \tag{A13}$$

$$\Theta_{tr}^* = \int_0^\infty \left(\frac{1-\zeta}{1-\zeta_w}\right) d\eta \tag{A14}$$

$$G_{tr} = \int_0^\infty (1 - g^2) d\eta \tag{A15}$$

Substitution of equation (A12) into the integrated chordwise momentum equations (eqs. (A2) and (A9)) puts equations (A2) and (A9) in the perfect-gas form used in references 1 and 17.

#### SKIN-FRICTION AND HEAT-TRANSFER FUNCTIONS

Chordwise and spanwise skin friction are given by

$$\tau_{w,x} = \mu_w \left(\frac{\partial u}{\partial z}\right)_w$$

$$\tau_{w,y} = \mu_w \left(\frac{\partial v}{\partial z}\right)_w$$
(A16)

Application of the transformation equations (9) to (15) and the assumption of locally similar profiles gives

$$\tau_{w,x} = \sqrt{\frac{\rho_{w}\mu_{w}u_{e}^{2}t_{s}}{\beta t_{e}}} \frac{du_{e}}{dx} f_{w}^{\prime\prime}$$

$$\tau_{w,y} = \sqrt{\frac{\rho_{w}\mu_{w}v_{e}^{2}t_{s}}{\beta t_{e}}} \frac{du_{e}}{dx} g_{w}^{\prime}$$
(A17)

In terms of skin-friction coefficients, equations (A17) may be rewritten

$$c_{f,x,w}\sqrt{N_{Re,w}}=2\sqrt{\frac{t_s}{\beta t_e}}\frac{x}{u_e}\frac{du_e}{dx}f_w''$$

$$c_{f,y,w}\sqrt{N_{Re,w}}=2\sqrt{\frac{t_s}{\beta t_e}}\frac{x}{u_e}\frac{du_e}{dx}g_w'$$
(A18)

The heat-transfer rate at the surface for a gas composed of a reacting mixture of atoms and molecules is (ref. 5, for example)

$$-q_w = \frac{\mu_w}{N_{Pr,t,w}} \left(\frac{\partial h}{\partial z}\right)_w (1 + F_w) \qquad (A19)$$

or, in the similarity coordinate system

$$-q_w = \frac{H_e}{N_{Pr,f,w}} \sqrt{\frac{\rho_w \mu_w t_s}{\beta t_e}} \frac{du_e}{dx} \zeta_w' (1 + F_w) \quad (A20)$$

Definition of the Nusselt number leads to the relation

$$\frac{N_{Nu,w}}{(N_{Re,w})^{1/2}} = \sqrt{\frac{t_s}{\beta t_e}} \frac{x}{u_e} \frac{du_e}{dx} \frac{\zeta_w'}{\zeta_{aw} - \zeta_w} (1 + F_w) \quad (A21)$$

where

$$\zeta_{aw} = t_e + \overline{r}(1 - t_e) \tag{A22}$$

#### REFERENCES

- Beckwith, Ivan E., and Cohen, Nathaniel B.: Application of Similar Solutions to Calculation of Laminar Heat Transfer on Bodies With Yaw and Large Pressure Gradient in High-Speed Flow. NASA TN D-625, 1961.
- Kemp, Nelson H., Rose, Peter H., and Detra, Ralph W.: Laminar Heat Transfer Around Blunt Bodies in Dissociated Air. Jour. Aero/Space Sci., vol. 26, no. 7, July 1959, pp. 421-430.
- Cohen, Nathaniel B., and Beckwith, Ivan E.:
   Boundary-Layer Similar Solutions for Equilibrium
   Dissociated Air and Application to the Calculation
   of Laminar Heat-Transfer Distribution on Blunt
   Bodies in High-Speed Flow. For presentation at
   the Second International Heat Transfer Conference
   (Boulder, Colo.), Aug. 28-Sept. 1, 1961.
- Hansen, C. Frederick: Approximations for the Thermodynamic and Transport Properties of High-Temperature Air. NASA TR R-50, 1959. (Supersedes NACA TN 4150.)
- Cohen, Nathaniel B.: Correlation Formulas and Tables of Density and Some Transport Properties of Equilibrium Dissociating Air for Use in Solutions of the Boundary-Layer Equations. NASA TN D-194, 1960.
- Cooke, J. C., and Hall, M. G.: Boundary Layers in Three Dimensions. Rep. No. Aero. 2635, British R.A.E., Feb. 1960.

- Vaglio-Laurin, Roberto: Laminar Heat Transfer on Three-Dimensional Blunt Nosed Bodies in Hypersonic Flow. ARS Jour., vol. 29, no. 2, Feb. 1959, pp. 123-129.
- Beckwith, Ivan E.: Similarity Solutions for Small Cross Flows in Laminar Compressible Boundary Layers. NASA TR R-107, 1961.
- Fay, J. A., and Riddell, F. R.: Theory of Stagnation Point Heat Transfer in Dissociated Air. Jour. Aero. Sci., vol. 25, no. 2, Feb. 1958, pp. 73-85, 121.
- Hayes, Wallace D., and Probstein, Ronald F.: Hypersonic Flow Theory. Academic Press, Inc. (New York), 1959, pp. 292-294.
- Lester: Laminar Heat Transfer Over Blunt-Nosed Bodies at Hypersonic Flight Speeds. Jet Propulsion, vol. 26, no. 4, Apr. 1956, pp. 259-269, 274
- Reshotko, Eli, and Beckwith, Ivan E.: Compressible Laminar Boundary Layer Over a Yawed Infinite Cylinder With Heat Transfer and Arbitrary Prandtl Number. NACA Rep. 1379, 1958. (Supersedes NACA TN 3986.)
- Eckert, Ernst R. G.: Survey on Heat Transfer at High Speeds. WADC Tech. Rep. 54-70, U.S. Air Force, Apr. 1954.
- Wilson, R. E.: Real Gas Laminar Boundary Layer.
   Skin Friction and Heat Transfer. U.S. Naval Ord.
   Lab. (White Oak, Md.), Apr. 11, 1960.

- Van Driest, E. R.: Investigation of Laminar Boundary Layer in Compressible Fluids Using the Crocco Method. NACA TN 2597, 1952.
- 16. Sibulkin, M.: Heat Transfer Near the Forward Stagnation Point of a Body of Revolution. Jour. Aero. Sci. (Readers' Forum), vol. 19, no. 8, Aug. 1952, pp. 570-571.
- Beckwith, Ivan E.: Similar Solutions for the Compressible Boundary Layer on a Yawed Cylinder With Transpiration Cooling. NASA TR R-42, 1959. (Supersedes NACA TN 4345.)
- Moeckel, W. E., and Weston, Kenneth C.: Composition and Thermodynamic Properties of Air in Chemical Equilibrium. NACA TN 4265, 1958.

- Huber, Paul W.: Tables and Graphs of Normal-Shock Parameters at Hypersonic Mach Numbers and Selected Altitudes. NACA TN 4352, 1958.
- Minzner, R. A., Champion, K. S. W., and Pond, H. L.: The ARDC Model Atmosphere, 1959. Air Force Surveys in Geophysics No. 115 (AFCRC-TR-59-267), Air Force Cambridge Res. Center, Aug. 1959.
- Adams, Mac C.: A Look at the Heat Transfer Problem at Super Satellite Speeds. [Preprint] 1556-60, American Rocket Soc., Dec. 1960.
- Reshotko, Eli: Heat Transfer to a General Three-Dimensional Stagnation Point. Jet Propulsion, vol. 28, no. 1, Jan. 1958, pp. 58-60.

TABLE I.—GAS PROPERTY CORRELATIONS FOR EQUILIBRIUM DISSOCIATED AIR AT CONSTANT

PRESSURE, 
$$10^{-4} \leq \frac{p}{p_{ref}} \leq 10$$

Low tem	perature
$\frac{h}{h_{\mathcal{B}}} = \frac{t}{t_{\mathcal{B}}}$	$N_{P\tau,f}$
0.0005 010 015 020 026 031 036 042 048	0. 770 . 729 . 708 . 689 . 680 . 684 . 689 . 696 . 702

	High	tempera	ture	
$\frac{h}{h_B} = \frac{t}{t_B}$	$N_{Pr,f}$	$F_1$	$F_2$	$F_3$
0. 10 . 20 . 30 . 40 . 50 . 60 . 70 . 80 . 90 1. 10 1. 20 1. 30 1. 40 1. 50 1. 60 1. 70	0.768 .771 .755 .742 .731 .721 .712 .704 .698 .603 .689 .684 .686 .684 .686 .686	" 0	* 0 .236 .269 .168 .150 .170 .217 .227 .270 .279 .287 .294 .299 .304 .307 .291 .270	. 231 . 112 . 006 . 210 . 230 . 198 . 139 . 075 . 016 . 040 092 139 181 218 220 279
1. 90 2. 00	. 700	235 204	. 236	268 235

a For 
$$\frac{h}{h_B} \leq 0.15$$
,  $F_1 = F_2 = 0$ .

b For 
$$\frac{h}{h_E} \leq 0.13$$
,  $F_3 = 0$ .

TABLE II.—A KEY TO THE TABLES OF SOLUTIONS FOR EQUILIBRIUM DISSOCIATED AIR (a) Heat-transfer cases; F=0 ( $N_{Lo}=1$ )

<i>t.</i>	$\frac{t}{t}$	t _R	V _∞ , fps	A, deg	ζw	h w h B	Range of $oldsymbol{eta}$	Table	Case
1	1	65. 8	0		2 3 5 6.579	0.0304 .0456 .0760 .1000 .0152	0 to 3. 4, \infty 0 to 2. 9 0 to 3. 0 0 to 2. 9 0 to 3. 5. \infty	III(a)	1 2 3 4
1	1	10	6, 000	0	. 20 . 30 . 50 . 75	. 020 . 030 . 050 . 075	0 to 3.5, ∞ 0 to 3.5 0 to 3.5 0 to 3.5, ∞ 0 to 3.5, ∞		6 7 8 9
1	\begin{cases} .8 \ .6 \ .4 \ .2 \end{cases}	10	6,000	0	. 50	. 05	0 to 3. 2 0 to 3. 5 0 to 3. 5 0 to 3. 4		10 11 12 13
1	1	2	14, 300	0	.0304 .05 .075 .10 .20 .0152	. 0152 . 025 . 0375 . 05	0 to 3.5, \infty 0 to 3.5 0 to 3.5 0 to 3.5 0 to 3.5. \infty		1 2 3 4 5 6 7 8 9 10 1 12 3 14 15 6 17 8 19 0 21 223 24 5 6 7 28 29 33 1 2 33 4 35 6 37 8 39 40 1 42 3 44 4 45 6 47 8
1	1	1	20, 400	0	.0152 .03 .05 .075 .100	. 0152 . 03 . 05 . 075 . 100	0 to 3.4, \( \infty \) 0 to 3.5 0 to 3.5 0 to 3.5 0 to 3.5		19 20 21 22 23
1	6 .4 .2	1	20, 400	0	. 0152	. 0152	0 to 3.2 0 to 3.3 0 to 3.4 0 to 3.4 [ 0 to 3.1		24 25 26 27
1	.8 .6 .2 .8 .6 .4 .2 .8 .6 .4 .2	1	20, 400	0	. 03	. 03	0 to 3. 1 0 to 3. 0 0 to 3. 4 0 to 3. 5 0 to 3. 3		28 29 30 31
1	8 .6 .4 .2	1	20, 400	0	. 10	. 10	0 to 3.4		32 33 34
1	1	.5	29,000	0	.0076 .02 .05	. 0152 . 04 . 10	0 to 3.5 0 to 3.4, ∞ 0 to 3.5, ∞ 0 to 3.5, ∞ 0 to 3.4 0 to 3.4 0 to 3.4 0 to 3.5, ∞ 0 to 3.5, ∞ 0 to 3.5, ∞		36 37 38
1	8 .6 .4 .2	.5	29,000	0	. 05	. 10	0 to 3. 2 0 to 3. 4 0 to 3. 4		39 40 41 42
14	1	21.9	3, 600	90	1.0 2.193	. 0152 . 0456 . 100	0 to 3. 5, ∞ 0 to 3. 3 0 to 3. 1		43 44 45
34	1	3. 333	11,000	57	. 05066 . 15 . 3333	. 0152 . 045 . 100	0 to 3. 3, ∞ 0 to 3. 4, ∞ 0 to 3. 4		46 47 48

TABLE II.—A KEY TO THE TABLES OF SOLUTIONS FOR EQUILIBRIUM DISSOCIATED AIR—Continued (a) Heat-transfer cases; F=0 ( $N_{L_s}=1$ )—Concluded

t.	<u>t.</u>	t _E	$V_{\infty}$ , fps	Λ, deg	\$w	h w h B	Range of $oldsymbol{eta}$	Table	Case
34	$ \begin{bmatrix} 0.8 \\ .6 \\ .4 \\ .2 \end{bmatrix} $	3. 333	11,000	57	0. 05066	0.0152	0 to 3.5 0 to 3.3 0 to 3.2 0 to 3.1	III(a)	49 50 51 52
14	1	. 667	25, 100	55	{ .01013 .040 .06667	.0152 .060 .100	0 to 3.5, \infty 0 to 3.4 0 to 3.5, \infty 0 to 3.1		51 52 53 54 55 56 57 58 59
35	8 .6 .4 .2	. 667	25, 100	55	.040	.060	0 to 3.2 0 to 3.3 0 to 3.0		57 58 59
34	1	. 333	35,600	55	\[ \ .005066 \  .015 \  .03333 \]	. 0152 . 045 . 100	0 to 3.1, ∞ 0 to 3.3 0 to 3.4, ∞ 0 to 3.1		60 61 62 63 64 65 66 67 68 69 70 71 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 89 90 90 90 90 90 90 90 90 90 90 90 90 90
14	8 .6 .4 .2	. 333	35, 600	55	. 03333	. 100	0 to 3.3 0 to 3.5 0 to 3.5		64 65 66
110	1	6. 58	7,600	90	10 .30 .6579	.0152 .0456 .100	0 to 3.3, ∞ 0 to 3.3, ∞ 0 to 3.1 ( 0 to 3.5		67 68 69
1/10	$   \left\{     \begin{array}{c}       1 \\       .75 \\       .50 \\       .262   \end{array}   \right. $	1.73	15, 500	74	.0262	. 0152	0 to 3.1 0 to 3.3 0 to 3.3		71 72 73
}1o	1	1	20,400	73	\begin{cases} .0152 \\ .05 \\ .10 \end{cases}	. 0152 . 05 . 10	0 to 3.5, ∞ 0 to 3.4 0 to 3.4, ∞ 0 to 3.0		74 75 76
1/10	8 .6 .4 .2	1	20,400	73	. 10	. 10	0 to 3.4 0 to 3.4 0 to 3.1		78 79 80
1/10	1	. 333	35, 600	72	$\left\{ \begin{array}{c} .005066 \\ .015 \\ .03333 \end{array} \right.$	. 0152 . 045 . 100	0 to 3.5, ∞ 0 to 3.5 0 to 3.5, ∞ 0 to 3.5, ∞		81 82 83 84
}1o	\begin{cases} .8 & .6 & .4 & .2 \end{cases}	. 333	35, 600	72	.015	. 045	0 to 3.5 0 to 3.1 0 to 3.2		85 86 87
1∕30	1	2. 19	13,700	90	.03333 .10 .2193	. 0152 . 0456 . 100	0 to 3.0, ∞ 0 to 3.1, ∞ 0 to 3.1, ∞		88 89 90
350	1	. 333	<b>35,</b> 600	80	.005066 .015	.0152 .045	0 to 3.3, ∞ 0 to 3.2, ∞ 1 0 to 3.2		91 92 93
1,40	{ .8 .6 .4	. 333	35,600	80	.015	.045	0 to 3.2 0 to 1.0 0 to 1.0		94 95 96
Addition	ll .2 al flat-plate s	solutions (β=0	) )	1			0.01.0	*	97

TABLE II.—A KEY TO THE TABLES OF SOLUTIONS FOR EQUILIBRIUM DISSOCIATED AIR—Concluded

t.	t.	t _B	$V_{\infty}$ , fps	A, deg	Range of \$\beta\$	Table	Case
1	0.99 .95 .8 .6 .4 .2 .99 .95 .8 .6 .4	1	20, 400	0	0 to 1.0 0 to 3.0 0 to 3.0 0 to 3.1 0 to 3.1 0 to 3.3 0 to 1.0	III(b)	1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 16 17 18 19 20 21 22 22 24 25 26 27 28 29 20 20 20 21 22 22 23 24 24 25 26 27 27 28 28 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20
1	.95 .8 .6 .4	.5	29, 000	0	0 to 2.7 0 to 2.7 0 to 3.0 0 to 3.3 0 to 3.4		8 9 10 11
.99 .95 1/3 1/3	1	1 1	20, 400	5.7	0 to 1		13
.95	1 1	1	20, 400	13 90 57	0 to 1		14
1/3	1	21. 9 3. 333	3,600	90	0 to 3.5		15
1/3	اد أ	3. 333	11,000	57	0 to 1.0	1	16
1/3	.8	. 667	25, 100	55	0 to 3.2 0 to 3.2 0 to 3.0		17 18 19
1/10	1.4	6. 58	7,600	90	0 to 3.4		20
-,	r i h	0.00	1,000	ฮบ	0 to 3.0 0 to 3.1		21
1/10	.75	1.73	15, 500	74	0 to 2.9 0 to 3.0		23 24
1/10	$ \left\{ \begin{array}{c}     .262 \\     1 \\     .8 \\     .4 \\     .2 \end{array} \right] $	1	20, 400	73	0 to 3.0 0 to 3.2 0 to 2.4 0 to 3.0 0 to 2.2		25 26 27 28
1/30	1	2. 19			0 to 0.75	1 1	30
Addition	al flat-plate's	olutions (B=	:0)		0 00 0.70		31

(c) Heat-transfer cases,  $N_{Le} \neq 1$ 

t.	$\frac{t_s}{t_s}$	t _E	$V_{\infty}$ , fps	Λ, deg	ξw	$\frac{h_w}{h_B}$	Range of $oldsymbol{eta}$	Table	Case
1	1	$ \begin{bmatrix} 2 \\ 1 \\ 1 \\ .5 \end{bmatrix} $	14, 300 20, 400 20, 400 29, 000	0 0 0	0.0304 .0152 .10	0. 0152 . 0152 . 10 . 10	0, 1/2, 1 0, 1/2, 1 0 to 3.5 0 to 3.5	IV(a)	1 2 3
1/3	1	3. 333 3. 333 . 667 . 667	11, 000 11, 000 25, 100 35, 600	57 57 55 55	. 05066 . 3333 . 040 . 03333	. 10 . 0152 . 10 . 060 . 10	0, 1/2, 1 0, 1/2, I 0, 1/2, I 0 to 3.5 0 to 3.5		5 6 7
1/10	1	6. 58 1 . 333	7,609 20,400 35,600	90 73 72	. 6579 . 0152 . 03333	. 10 . 0152 . 10	0, 1/2, 1 0, 1/2, I 0 to 3.2		9 10
1/30 Addition	l pal flat-plate	2. 19 . 333 solutions (β=	13, 700 35, 600	90 80	. 2193	. 10 . 0152	0, 1/2, 1 0, 1/2, 1		11 12 13 14

(d) Insulated wall cases,  $N_{L\epsilon}\neq 1$ 

ι,	$\frac{t_{\epsilon}}{t_{\epsilon}}$	t _B	$V_{\infty}$ , fps	A, deg	Range of \$\beta\$	Table	Case
1/3 1/3 1/10 1/10 1/30 Addition	1 1 1 1 nal flat-plate	3. 333 . 667 6. 58 1 2. 19 solutions (##	11,000 25,100 7,600 20,400 13,700	57 55 90 73 90	0, 1 0, 1 0, 1 0, 1 0, 1 0, 1	(IVb)	1 2 3 4 5 6

### BOUNDARY-LAYER SIMILAR SOLUTIONS FOR LAMINAR HEAT-TRANSFER DISTRIBUTION

# TABLE III.—TABLES OF SIMILAR SOLUTIONS FOR EQUILIBRIUM DISSOCIATED AIR, F=0 ( $N_{Le}=1$ ) (a) Heat-transfer cases

β	g' _w	5.0	f'' _w	$\frac{\zeta_w'}{\zeta_w'(\beta=1)}$	$\Delta_{tr}^{\bullet}$
ase 1:		!	!	1 - 6 - 1	-
<b>t.=</b> 1;	$\frac{t_e}{t_e} = 1; t_B = 6$	5.8; V∞≠0 fp	os; $\zeta_{\omega}=2; \frac{h_{\omega}}{h_{\omega}}$	=0,0304;	
$N_{P_{f},j}$	$\kappa = 0.680; \frac{\rho}{\rho}$	$\frac{e\mu_{\theta}}{\omega\mu_{w}}$ =1.259			
.5 1.0 1.4 1.8 2.2 2.6 3.0 3.4	0. 4934 .6111 .6581 .6822 .7003 .7146 .7265 .7365 .7451 .9600	-0. 4305 5253 5627 5816 5958 6070 6162 6239 6305 7862	0. 4934 1. 364 1. 924 2. 289 2. 608 2. 896 3. 160 3. 406 3. 636	0. 7650 . 9335 1. 0 1. 034 1. 059 1. 079 1. 095 1. 109 1. 121 1. 397	3. 017 2. 041 1. 730 1. 587 1. 488 1. 413 1. 354 1. 306
ase 2:					7.
t₅=1;	$\frac{t_e}{t_s}=1; t_E=6$	5.8; $V_{\infty} = 0$ fg	os: $\zeta_w = 3$ ; $\frac{h_w}{h_B}$	=0.0456;	
$N_{Pr}$	$h_{w} = 0.693; \frac{\rho}{\rho}$	$\frac{\epsilon \mu \epsilon}{\omega \mu \omega} = 1.475$			
0 , 5 1, 0 1, 4 1, 8 2, 2 2, 6 2, 9	0. 5076 .6614 .7183 .7470 .7684 .7852 .7991 .8080	-0. 9048 -1. 158 -1. 251 -1. 297 -1. 331 -1. 358 -1. 380 -1. 394	0. 5076 1. 721 2. 487 2. 982 3. 416 3. 807 4. 165 4. 416	0. 7235 . 9259 1. 0 1. 037 1. 064 1. 086 1. 103 1. 115	4. 747 3. 167 2. 717 2. 515 2. 376 2. 272 2. 191
Case 3				''	
t,=1;	$\frac{t_s}{t_s} = 1; \ t_B = 6$	5.8; $V_{\infty} = 0$ f	$ps; \zeta_w = 5; \frac{h_w}{h_R}$	=0.0760;	
$N_{Pr}$	$_{\mu} = 0.737; \frac{\mu}{\rho}$	$\frac{\partial e^{\mu}e}{\omega^{\mu}\omega}$ = 1.795			
0 .5 1.0 1.4 1.8 2.2 2.6 3.0	0. 5211 . 7258 . 7952 . 8295 . 8550 . 8749 . 8912 . 9048	-1. 945 -2. 654 -2. 892 -3. 009 -3. 094 -3. 161 -3. 216 -3. 261	0. 5211 2. 276 3. 357 4. 054 4. 663 5. 209 5. 710 6. 175	0. 6726 . 9177 1. 0 1. 040 1. 070 1. 093 1. 112 1. 128	7. 816 5. 065 4. 383 4. 084 3. 880 3. 729
Case 4	:		•		
$t_s = 1$	$; \frac{t_{\bullet}}{t_{\bullet}} = 1; t_{B} = 0$	$55.8; V_{\infty} = 0 \text{ f}$	ps; $\zeta_w = 6.579$	$\frac{h_w}{h_R} = 0.1000;$	
$N_{Pr}$	$f_* = 0.768; \frac{f}{g}$	$\frac{\sigma_{e}\mu_{e}}{\sigma_{\mu}\omega}$ =1.969			
0 1.0 1.4 1.8 2.2 2.6 2.9	0. 5246 . 7575 . 8332 . 8704 . 8978 . 9193	-2.799 -3.957 -4.330 -4.512 -4.646 -4.749	0. 5246 2. 613 3. 886 4. 704 5. 418 6. 059	0. 6463 . 9139 1. 000 1. 042 1. 073 1. 097	9. 894 6. 292 5. 460 5. 100 4. 855 4. 674

١

		٫,	,,,	₹′ړ	A.*
β	g'w	\$ 6	f''	ζ'ω(β=1)	$\Delta_{tr}^*$
Case 5:	'				
t.=1;	$\frac{t_s}{t_s}=1; t_B=1$	); $V_{\infty} = 6,000$	fps; \( \su = 0.15	52; $\frac{h_w}{h_R} = 0.0152$	2;
$N_{Proj}$	$v_{\text{tw}} = 0.709; \frac{\rho}{\rho}$	eμ ₆ =0.5122			
			1	1	
0 .5 1.0	0.3808 .4110 .4263	0. 2845 . 3055 . 3160	0. 3808 . 5410 . 6464	0. 9004 . 9667 1. 000	0. 1939 . 06330 . 00552 —, 02340
1 4	. 4346 . 4410	.3217	.7136	1.018 1.032	<b></b> 04455
1.8 2.2 2.6 3.0 3.4	. 4462 . 4506	. 3296	. 8235 . 8704	1. 043 1. 052	06092 07410
3.0	. 4544	. 3351	. 9135	1.060	→. 08496
3. 4	. 4576 . 4584	. 3372	. 9536	1, 067 1, 069 1, 249	09419 . 09628
ω	. 5485	. 3948		1. 249	
Case 6:					
$t_{s}=1;$	$\frac{t_e}{t_a}=1; t_B=1$	0; $V_{\infty} = 6,000$	fps; $\zeta_{\omega} = 0.26$	$0; \frac{hw}{hB} = 0.020;$	
$N_{Pr}$	$_{p}$ , $_{w} = 0.690$ ; $\frac{\rho}{\rho}$	$\frac{e\mu s}{w\mu w} = 0.5568$			
0	0.3921	0. 2695	0.3921	0.8940	0. 2630
1. 0	. 4255	. 2909	. 5756	. 9648 1. 000	. 1143
1.4	. 4514	. 3072	. 7753	1.019	. 01686
1. 8 2. 2 2. 6	. 4584	.3116	. 8431	1. 019 1. 034 1. 045	00679 02511
2.6	. 4690	.3152	. 9589	1 1 1355	03983
3. 0 3. 4	. 4731	. 3207	1. 010 1. 057	1. 064 1. 071	03983 05197 06225
3, 5	. 4775	. 3234	1.057 1.069	1. 071 1. 073	
Case 7	:				
		0; $V_{\infty} = 6,000$	fps; $\zeta_w = 0.3$	0; $\frac{h_w}{h_B} = 0.030$ ;	
$t_s = 1$ ;			) fps; ζ _w =0.3	$0; \frac{h_w}{h_E} = 0.030;$	
$t_s = 1$ ;	$\begin{cases} \frac{t_{\bullet}}{t_{\bullet}} = 1; \ t_{B} = 1 \\ f_{\bullet, w} = 0.680; \ \frac{f_{\bullet}}{\rho} \end{cases}$	$\frac{0.6\mu_0}{w^{\mu}w} = 0.6419$ $0.2428$	0.4113	0.8819	0.4074
$t_s = 1;$ $N_{Pr},$ $0$	$\frac{t_{\bullet}}{t_{\bullet}} = 1; t_{B} = 1$ $f_{\bullet w} = 0.680; \frac{f_{\bullet}}{\rho}$ $0.4113$ $.4510$	$\frac{0.6 \mu_{o}}{w^{\mu}w} = 0.6419$ $0.2428$ $0.2646$	0.4113	0.8819	. 2206
$t_s = 1;$ $N_{Pr},$ 0 .5 1.0	$\begin{cases} \frac{t_{\bullet}}{t_{\bullet}} = 1; \ t_{B} = 1 \\ f_{\bullet w} = 0.680; \frac{f_{\bullet}}{\rho} \end{cases}$ $\begin{cases} 0.4113 \\ .4510 \\ .4706 \\ .4812 \end{cases}$	$\frac{0.6 \mu s}{w^{\mu} w} = 0.6419$ 0. 2428 2646 2753	0. 4113 . 6407 . 7939	0. 8819 . 9613 1. 000 1. 021	. 2206 . 1409 . 1016
$t_s = 1;$ $N_{Pr},$ 0 .5 1.0	$\begin{cases} t_{\bullet} \\ t_{\bullet} = 1; t_{B} = 1 \end{cases}$ $f_{\bullet w} = 0.680; \frac{f_{\bullet}}{\rho}$ $0.4113$ $.4510$ $.4706$ $.4812$ $.4893$	$\frac{0.646}{w^{\mu}w} = 0.6419$ 0.2428 2646 2753 2810 2854	0. 4113 . 6407 . 7939	0. 8819 . 9613 1. 000 1. 021 1. 037	. 2206 . 1409 . 1016 . 07285
$t_s = 1;$ $N_{Pr},$ 0 .5 1.0 1.4 1.8 2.2 2.6	$\begin{array}{c} \frac{t_{\bullet}}{t_{\star}} = 1; \ t_{B} = 1 \\ f_{\bullet, w} = 0.680; \ \frac{f_{\bullet}}{\rho} \\ \hline 0.4113 \\ 4510 \\ 4706 \\ 4812 \\ 4893 \\ 4960 \\ 5015 \\ \end{array}$	$\frac{0 e \mu e}{w \mu w} = 0.6419$ 0.2428 2.646 2.2753 2.810 2.854 2.890 2.2919	0. 4113 . 6407 . 7939	0. 8819 . 9613 1. 000 1. 021 1. 037 1. 050 1. 060	. 2206 . 1409 . 1016 . 07285 . 05075 . 03002
$t_s = 1;$ $N_{Pr},$ 0 .5 1.0 1.4 1.8 2.2 2.6	$\begin{array}{c} \frac{t_s}{t_s} = 1; \ t_B = 1 \\ f_{t,w} = 0.680; \frac{t_s}{\rho} \\ \hline \\ 0.4113 \\ 4510 \\ 4706 \\ 4812 \\ 4893 \\ 4960 \\ 5015 \\ 5063 \\ \end{array}$	$e^{\mu \mu}_{w} = 0.6419$ 0. 2428 2646 2753 2810 2854 2890 2919	0. 4113 . 6407 . 7939	0. 8819 . 9613 1. 000 1. 021 1. 037 1. 050 1. 060 1. 070	. 2206 . 1409 . 1016 . 07285 . 05075 . 03002
$t_s = 1;$ $N_{Pr},$ 0 .5 1.0	$\begin{array}{c} \frac{t_{\bullet}}{t_{\star}} = 1; \ t_{B} = 1 \\ f_{\bullet, w} = 0.680; \ \frac{f_{\bullet}}{\rho} \\ \hline 0.4113 \\ 4510 \\ 4706 \\ 4812 \\ 4893 \\ 4960 \\ 5015 \\ \end{array}$	$\frac{0 e \mu e}{w \mu w} = 0.6419$ 0.2428 2.646 2.2753 2.810 2.854 2.890 2.2919	0. 4113 . 6407 . 7939	0. 8819 . 9613 1. 000 1. 021 1. 037 1. 050 1. 060	. 2206 . 1409 . 1016 . 07285 . 05075 . 03002
t _s =1;  N _{Pr} .  0 .5 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.5 Case 8	$\begin{array}{c} \frac{\ell_s}{\ell_s} = 1; \; \ell_B = 1 \\ f_{*w} = 0.680; \; \frac{\ell_s}{\rho} \\ \hline \\ 0.4113 \\ .4510 \\ .4706 \\ .4812 \\ .4893 \\ .4960 \\ .5015 \\ .5063 \\ .5104 \\ .5114 \\ \\ \end{array}$	0.2428 .2646 .2646 .2753 .2810 .2854 .2990 .2919 .2944 .2966 .2971	0. 4113 .6407 .7939 .8931 .9797 1. 057 1. 128 1. 104 1. 256 1. 271	0. 8819 . 9613 1. 000 1. 021 1. 037 1. 050 1. 060 1. 070 1. 077	. 2206 1409 1016 . 07285 . 05075 . 03002 . 01832 . 00594 . 00316
t _s =1;  N _{Pr} .  0 .5 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.5 Case 8	$\begin{array}{c} \frac{\ell_s}{\ell_s} = 1; \; \ell_B = 1 \\ f_{*w} = 0.680; \; \frac{\ell_s}{\rho} \\ \hline \\ 0.4113 \\ .4510 \\ .4706 \\ .4812 \\ .4893 \\ .4960 \\ .5015 \\ .5063 \\ .5104 \\ .5114 \\ \\ \end{array}$	$e_{\mu\mu} = 0.6419$ $e_{\mu\mu} = 0.6419$ 0. 2428 2646 2753 2810 2854 2890 2919 2944 2966	0. 4113 .6407 .7939 .8931 .9797 1. 057 1. 128 1. 104 1. 256 1. 271	0. 8819 . 9613 1. 000 1. 021 1. 037 1. 050 1. 060 1. 070 1. 077	. 2206 1409 1016 . 07285 . 05075 . 03002 . 01832 . 00594 . 00316
$t_s = 1;$ $N_{Pr},$ 0 1, 0 1, 4 1, 8 2, 2 2, 6 3, 0 3, 4 3, 5 Case 8 $t_s = 1$	$\begin{array}{c} t_{\bullet} = 1; \ t_{B} = 1 \\ f_{\bullet} = 0.680; \ \frac{f_{\bullet}}{\rho} \\ \hline \\ 0.4113 \\ 4510 \\ 4706 \\ 4812 \\ 4893 \\ 4960 \\ 5015 \\ 5063 \\ 5104 \\ 5114 \\ \hline \\ \vdots \\ t_{\bullet} = 1; \ t_{B} = 1 \\ \hline \end{array}$	0.2428 .2646 .2646 .2753 .2810 .2854 .2990 .2919 .2944 .2966 .2971	0. 4113 .6407 .7939 .8931 .9797 1. 057 1. 128 1. 104 1. 256 1. 271	0. 8819 . 9613 1. 000 1. 021 1. 037 1. 050 1. 060 1. 070 1. 077	. 2206 1409 1016 . 07285 . 05075 . 03002 . 01832 . 00594 . 00316
t _s =1;  N _{Pr} ,  0  5 1.0 1.4 1.8 2.26 3.0 3.4 3.5 Case 8 t _s =1 N _{Pr} ,	$\begin{aligned} \frac{t_s}{t_s} &= 1; \ t_B = 1 \\ f_{sw} &= 0.680; \frac{f_{sw}}{\rho} \\ \hline 0.4113 & .4510 \\ .4706 & .4812 \\ .4893 & .4960 \\ .5015 & .5063 \\ .5104 & .5114 \\ \hline \vdots & \vdots \\ t_s &= 1; \ t_B &= 1 \\ f_{sw} &= 0.699; \frac{f_{sw}}{\rho} \\ \hline 0.4379 & 0.4379 \\ \hline \end{aligned}$	$v_{\mu\nu} = 0.6419$ 0. 2428 2046 2753 2810 2854 2890 2919 2944 2996 2971  0; $V_{\infty} = 6,000$	0. 4113 .6407 .7939 .8931 .9797 1. 057 1. 128 1. 194 1. 226 1. 271	$\begin{array}{c} 0.8819 \\ .9613 \\ 1.000 \\ 1.021 \\ 1.037 \\ 1.050 \\ 1.070 \\ 1.077 \\ 1.079 \\ \end{array}$	. 2206 1409 1016 07285 05075 03002 01832 00594 00316
t _s =1;  N _{Pr} ,  0  5 1,0 1,4 1,8 2,2 3,0 3,4 3,5  Case 8 t _s =1  N _{Pr} ,	$\begin{array}{c} t_{\bullet} = 1; \ t_{B} = 1 \\ f_{\bullet w} = 0.680; \ \frac{f_{\bullet}}{\rho} \\ \hline 0.4113 & .4510 \\ .4706 & .4812 \\ .4893 & .4960 \\ .5015 & .5063 \\ .5104 & .5114 \\ \hline \vdots \\ t_{\bullet} = 1; \ t_{B} = 1 \\ f_{\bullet w} = 0.699; \ \frac{f_{\bullet}}{\rho} \\ \hline 0.4379 & .4885 \\ .5126 \\ \hline \end{array}$	$e_{\mu\mu} = 0.6419$ 0. 2428 2046 2753 2810 2854 2890 2919 2944 2986 2971  0; $V_{\infty} = 6,000$ 0. 1876 2079 2175	0. 4113 .6407 .7939 .8931 .9797 1. 0.57 1. 128 1. 194 1. 226 1. 271  0. fps; $\xi_w$ =0.5	$\begin{array}{ c c c c c c }\hline 0.8819 & .9613 \\ .9613 & .000 \\ 1.021 & .021 \\ 1.037 & .050 \\ 1.070 & .077 \\ 1.079 & \\ .00; & \frac{h_w}{h_\pi} = 0.050; \\ \hline 0.8627 & .9560 \\ 1.000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ .000 & \\ $	2206 1409 1016 07285 05075 03002 01832 00594 00316
$t_s = 1;$ $N_{Fr}$ .  0 .50 1.4 1.8 2.2 2.6 3.4 3.5 $t_s = 1$ $N_{Fr}$ .  0 .5 1.0 1.4	$\begin{array}{c} t_s \\ t_s = 1; \ t_B = 1 \\ f_s = 0.680; \ \frac{f_s}{\rho} \\ \hline \\ 0.4113 \\ .4510 \\ .4706 \\ .4812 \\ .4893 \\ .4960 \\ .5015 \\ .5063 \\ .5104 \\ .5114 \\ \hline \\ \vdots \\ t_s = 1; \ t_B = 1 \\ f_s = 0.699; \ \frac{f_s}{\rho} \\ \hline \\ 0.4379 \\ .4885 \\ .5126 \\ .5255 \\ \hline \end{array}$	$v_{\mu}^{\mu} = 0.6419$ 0.2428 2.2646 2.753 2.810 2.854 2.2990 2.919 2.944 2.966 2.971  0; $V_{\infty} = 6,000$	0. 4113 .6407 .7939 .8931 .9797 1. 057 1. 128 1. 194 1. 256 1. 271	0. 8819 . 9613 1. 000 1. 021 1. 037 1. 050 1. 060 1. 070 1. 079 1. 079 60; $\frac{h_w}{h_g}$ = 0.050; 0. 8627 . 9560 1. 000 1. 000	0. 6822 4215 3161 2631 2631 2631 2631 2631
t _s =1; N _{Pr} , 0 .5 1.0 1.4 1.8 2.2 6.3 3.0 3.4 3.5 Case 8 t _s =1 N _{Pr} , 1.0 1.4 1.8 2.2	$\begin{array}{c} t_s \\ t_s = 1; \ t_B = 1 \\ f_{sw} = 0.680; \ \frac{f_{sw}}{\rho} \\ \hline \\ 0.4113 \\ .4510 \\ .4706 \\ .4812 \\ .4893 \\ .4960 \\ .5015 \\ .5063 \\ .5114 \\ \hline \\ \vdots \\ t_s = 1; \ t_B = 1 \\ f_{sw} = 0.699; \ \frac{f_{sw}}{\rho} \\ \hline \\ 0.4379 \\ .4885 \\ .5126 \\ .5255 \\ .5355 \\ .5435 \\ \end{array}$	$v_{\mu\nu} = 0.6419$ 0. 2428 2046 2753 2810 2854 2890 2919 2944 2966 2971  0; $V_{\infty} = 6,000$	0. 4113 .6407 .7939 .8931 .9797 1. 057 1. 128 1. 194 1. 226 1. 271 0. fps; $\zeta_w = 0.5$ 0. 4379 .7481 .9557 1. 091 1. 209 1. 316	$\begin{array}{c} 0.8819 \\ .9613 \\ 1.000 \\ 1.021 \\ 1.037 \\ 1.050 \\ 1.077 \\ 1.079 \\ \\ 0.8627 \\ .9560 \\ 1.000 \\ 1.023 \\ 1.041 \\ 1.056 \\ \end{array}$	. 2206 1409 1016 07285 05075 03002 01832 00594 00316
t _s =1; N _{Pr} , 0 .5 1.0 1.4 1.8 2.2 6.3 3.0 3.4 3.5 Case 8 t _s =1 N _{Pr} , 1.0 1.4 1.8 2.2	$\begin{array}{c} t_{\star} = 1; \ t_{B} = 1 \\ f_{\star} = 0.680; \ \frac{f_{\star}}{\rho} \\ \hline 0.4113 \\ .4510 \\ .4706 \\ .4812 \\ .4893 \\ .4960 \\ .5015 \\ .5063 \\ .5104 \\ .5114 \\ \hline \vdots \\ f_{\star} = 1; \ t_{B} = 1 \\ f_{\star} = 0.699; \ \frac{f_{\star}}{\rho} \\ 0.4379 \\ .4885 \\ .5126 \\ .5355 \\ .5355 \\ .5355 \\ .5503 \\ \end{array}$	$v_{\mu\mu} = 0.6419$ 0. 2428 2046 2753 2810 2854 2990 2919 2944 2966 2971  0; $V_{\infty} = 6,000$ $v_{\mu\nu} = 0.7833$ 0. 1876 2079 2175 2226 22265 22265 22265	0. 4113 .6407 .7939 .8931 .9797 1. 057 1. 128 1. 194 1. 256 1. 271 0. 4379 .7481 .9557 1. 091 1. 209 1. 316 1. 414	$\begin{array}{c} 0.8819 \\ .9613 \\ 1.000 \\ 1.021 \\ 1.050 \\ 1.060 \\ 1.070 \\ 1.070 \\ 1.079 \\ \vdots \\ h_{\pi} = 0.050; \\ \\ 0.8627 \\ .9560 \\ 1.000 \\ 1.023 \\ 1.056 \\ 1.068 \\ \end{array}$	0. 6822 4215 0. 6822 4215 1. 2631 1. 2631 1. 2631 1. 2631 1. 2631 1. 2631 1. 2631 1. 2631 1. 2631
t _* =1;  N _{Pr} ,  0 .5 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.5 Case 8 t _* =1 N _{Pr} ,  0 .5 1.0 1.4 1.8	$\begin{array}{c} t_s \\ t_s = 1; \ t_B = 1 \\ f_{sw} = 0.680; \ \frac{f_{sw}}{\rho} \\ \hline \\ 0.4113 \\ .4510 \\ .4706 \\ .4812 \\ .4893 \\ .4960 \\ .5015 \\ .5063 \\ .5114 \\ \hline \\ \vdots \\ t_s = 1; \ t_B = 1 \\ f_{sw} = 0.699; \ \frac{f_{sw}}{\rho} \\ \hline \\ 0.4379 \\ .4885 \\ .5126 \\ .5255 \\ .5355 \\ .5435 \\ \end{array}$	$v_{\mu\nu} = 0.6419$ 0. 2428 2046 2753 2810 2854 2890 2919 2944 2966 2971  0; $V_{\infty} = 6,000$	0. 4113 .6407 .7939 .8931 .9797 1. 057 1. 128 1. 194 1. 226 1. 271 0. fps; $\zeta_w = 0.5$ 0. 4379 .7481 .9557 1. 091 1. 209 1. 316	$\begin{array}{c} 0.8819 \\ .9613 \\ 1.000 \\ 1.021 \\ 1.037 \\ 1.050 \\ 1.077 \\ 1.079 \\ \\ 0.8627 \\ .9560 \\ 1.000 \\ 1.023 \\ 1.041 \\ 1.056 \\ \end{array}$	. 2206 1409 1016 07285 05075 03002 01832 00594 00316

# TABLE III.—TABLES OF SIMILAR SOLUTIONS FOR EQUILIBRIUM DISSOCIATED AIR, F=0 ( $N_{Le}=1$ )—Con. (a) Heat-transfer cases—Continued

β	g' ₁₆	۲′ <u>»</u>	$f_{w}^{\prime\prime}$	$\left  \frac{\zeta'_{w}}{\zeta'_{w}(\beta=1)} \right $	$\Delta_{tr}^*$
Case 9:					
$t_s=1;$	$\frac{t_e}{t_e}=1; t_E=10$	; $V_{\infty} = 6,000$	fps; $\zeta_w = 0.75$	$5; \frac{h_w}{h_R} = 0.075;$	
$N_{Pr}$	$f_{,p}=0.735; \frac{\rho}{\rho}$	$\frac{\partial_s \mu_s}{\partial_w \mu_w} = 0.9149$			
0 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.5	0. 4580 . 5194 . 5478 . 5629 . 5745 . 5838 . 5915 . 5981 . 6039 . 6052 . 7570	0. 1013 .1141 .1199 .1230 .1254 .1272 .1288 .1302 .1313 .1316 .1608	0. 4580 . 8517 1. 114 1. 285 1. 436 1. 571 1. 696 1. 811 1. 920 1. 946	0.8444 .9512 1.000 1.026 1.046 1.061 1.074 1.085 1.095 1.097 1.341	0. 9900 .6442 .5088 .4435 .3966 .3608 .3323 .3088 .2891 .2847
Case 10	);			.'	
t ₀ =1;	$\frac{t_s}{t_s}$ =0.8; $t_E$ =	10; $V_{\infty} = 6.00$	00 fps; ζ _w =0.	.50; $\frac{h_w}{h_B} = 0.05$ ;	
$N_{Pr}$	$f_{*u} = 0.699; \frac{\rho_{*}}{\rho_{*}}$	$\frac{e^{\mu_{\theta}}}{e^{\mu_{w}}} = 0.8468$			
0 1.0 1.4 1.8 2.2 2.6 3.0 3.2	0. 4442 . 4954 . 5205 . 5342 . 5448 . 5534 . 5606 . 5667 . 5695	0. 1805 . 1987 . 2074 . 2120 . 2156 . 2185 . 2209 . 2229 . 2238	0. 4442 . 7442 . 9468 1. 079 1. 195 1. 300 1. 396 1. 485 1. 527	0.8706 .9582 1.000 1.022 1.040 1.053 1.065 1.075 1.075	0. 9046 . 5865 . 4518 . 3854 . 3371 . 3000 . 2702 . 2457
Case 11	!:			1 1	
t.=1;	$\frac{t_{e}}{t_{s}}$ =0.6; $t_{E}$ =	10; $V_{\infty} = 6.00$	00 fps; ζ _w =0.	.50; $\frac{h_w}{h_E} = 0.05$ ;	
$N_{Pr}$	$\rho_{v}=0.699; \frac{\rho_{v}}{\rho_{v}}$	$\frac{e^{\mu}e}{e^{\mu}w}$ =0.9367			
0 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.5	0. 4521 . 5040 . 5305 . 5452 . 5566 . 5659 . 5738 . 5805 . 5865 . 5878	0. 1723 . 1882 . 1959 . 2000 . 2032 . 2058 . 2079 . 2098 . 2114 . 2118	0. 4521 .7411 .9387 1. 068 1. 182 1. 284 1. 379 1. 466 1. 548 1. 568	0.8798 .9606 1.000 1.021 1.037 1.051 1.062 1.071 1.079 1.081	1. 251 . 8412 . 6619 . 5722 . 5067 . 4561 . 4155 . 3819 . 3536 . 3471
Case 12				h	
	$\rho_{\nu} = 0.699; \frac{\rho_{\nu}}{\rho_{\nu}}$	10; $V_{\infty} = 6,00$ $\frac{\mu_e}{\mu_w} = 1.081$	0 fps; $\zeta_w = 0$ .	$5; \frac{hE}{hE} = 0.05;$	
0	0.4620	0, 1628	0.4620	0. 8892	1.958
.5 1.0 1.4 1.8 2.2 2.6 3.0	. 5158 . 5444 . 5605 . 5731 . 5836 . 5924 . 6000 . 6068	. 1763 . 1830 . 1866 . 1895 . 1917 . 1936 . 1953 . 1967	. 7425 . 9367 1. 064 1. 177 1. 278 1. 371 1. 458 1. 539	. 9633 1. 000 1. 020 1. 035 1. 048 1. 058 1. 067 1. 075	1. 360 1. 091 . 9549 . 8549 . 7774 . 7147 . 6633 . 6195

$N_{Pr,f,w}$ 0 0.5 1.0 1.4 1.8 2.2 2.6 3.0 3.4  Case 14: $t_{\epsilon}=1; \frac{t_{\epsilon}}{t_{\epsilon}}$	=0.699; $\frac{\rho_{e}}{\rho_{w}}$ =0.4752 -5711 -5901 -6052 -6177 -6283 -6375 -6457 =1; $t_{E}$ =2;	0. 1518  1697 1729 1753 1773 1779 1804 1817 $V_{\infty} = 14,300$ $\mu_{\mu} = 0.2940$ 0. 2442 2625 2718 2768	0.4752 	0. 8945 1. 000 1. 019 1. 033 1. 045 1. 055 1. 063 1. 071 304; $\frac{h_w}{h_g}$ =0.01 0. 8984 9658	4. 812 2. 738 2. 421 2. 188 2. 008 1. 863 1. 744 1. 643
$N_{Pr,f,w}$ 0  .5 1.0 1.4 1.8 2.2 6 3.0 3.4  Case 14: $t_{\star}$ =1; $\frac{t_{\star}}{t_{\star}}$ $N_{Pr,f,w}$ 0 .5 1.0 1.4 1.8 1.8 2.2 2.3 3.0	= 0.699; $\frac{\rho_e}{\rho_w}$ 0.4752  - 5711 - 5901 - 6052 - 6177 - 6283 - 6375 - 6457  =1; $t_E$ =2; =0.709; $\frac{\rho_e}{\rho_w}$ 0.2975 - 3212 - 3333 - 3400	$\frac{\mu_{e}}{\mu_{w}}$ =1.385  0.1518  1697 1729 1753 1773 1779 1804 .1817 $V_{\infty}$ =14,300 $\frac{\mu_{e}}{\mu_{w}}$ =0.2940  0.2442 .2625 .2718 .2768	0. 4752	0. 8945 1. 000 1. 019 1. 033 1. 045 1. 055 1. 063 1. 071 304; $\frac{h_w}{h_g}$ =0.01 0. 8984 9658	2.738 2.421 2.188 2.008 1.863 1.744 1.643
0 1.5 1.0 1.4 1.8 2.2 2.6 3.0 3.4 Case 14: t _* =1; t _* /t _* t _* =1; t _* /t _* /t _* N _{Pr} J.w	0. $4752$	0. 1518  1697 1729 1753 1773 1779 1804 1817 $V_{\infty} = 14,300$ $\mu_{\mu} = 0.2940$ 0. 2442 2625 2718 2768	9778 1. 112 1. 230 1. 336 1. 434 1. 525 1. 610  fps; \$\( \sum = 0.03 \)	1.000 1.019 1.033 1.045 1.055 1.063 1.071 304; $\frac{h_w}{h_B}$ = 0.01 0.8984 .9658	2.738 2.421 2.188 2.008 1.863 1.744 1.643
.5 1.0 1.4 1.8 2.2 2.6 3.4 Case 14: t _* =1; t _* t _* 1.0 1.4 1.8 2.2 2.6 3.0 1.4 1.8 2.2 2.6 3.0 1.4 1.8 1.8 2.2 2.6 3.0 1.4 1.8 1.8 2.2 2.6 3.0 1.4 1.8 1.8 2.2 2.6 3.0 1.4 1.8 1.8 2.2 2.6 3.0 1.4 1.8 1.8 2.2 2.6 3.0 1.4 1.8 1.8 2.2 2.6 3.0 1.4 1.8 1.8 2.2 2.6 3.0 1.4 1.8 1.8 2.2 2.6 3.0 1.4 1.8 1.8 2.2 2.6 3.0 1.4 1.8 1.8 2.2 2.6 3.0 1.4 1.8 1.8 2.2 2.6 3.0 1.4 1.8 1.8 2.2 2.6 3.0 1.4 1.8 1.8 1.8 2.2 2.6 3.0 1.4 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	$5711$ $5901$ $6052$ $6077$ $6283$ $6375$ $6457$ =1; $t_{\mathcal{B}}$ =2; =0.709; $\frac{\rho_{\mathcal{A}}}{\rho_{\mathcal{B}}}$ $\frac{\rho_{\mathcal{B}}}{3333}$ $\frac{3212}{3400}$	$1607$ $1729$ $1753$ $1773$ $1790$ $1804$ $1817$ $V_{\infty} = 14,300$ $v_{\mu\nu} = 0.2940$ $v_{\mu\nu} = 0.2940$ $v_{\mu\nu} = 0.242$	9778 1. 112 1. 230 1. 336 1. 434 1. 525 1. 610  fps; \$\( \sum = 0.03 \)	1.000 1.019 1.033 1.045 1.055 1.063 1.071 304; $\frac{h_w}{h_B}$ = 0.01 0.8984 .9658	2.738 2.421 2.188 2.008 1.863 1.744 1.643
1.0 1.4 1.8 2.2 2.6 3.0 3.4 Case 14: $t_{\epsilon}=1;\frac{t_{\epsilon}}{t_{\epsilon}}$ $N_{Pr}J_{\epsilon}w$ 0 .5 1.0 1.4 1.8 2.2 2.6 3.0 3.0	. 5901 . 6052 . 6177 . 6283 . 6375 . 6457 =1; $t_E$ =2; =0.709; $\frac{\rho_v}{\rho_w}$ 0. 2975 . 3212 . 3333 . 3400	1729 1753 1773 1770 1804 1817 $V_{\infty} = 14,300$ $V_{\omega} = 14,300$ $V_{\omega} = 14,300$ 0.2442 2625 2718 2768	1. 112 1. 230 1. 336 1. 434 1. 525 1. 610 fps; \$\( \text{t}_w = 0.03 \)	1. 019 1. 033 1. 045 1. 055 1. 053 1. 071 304;	2. 421 2. 188 2. 008 1. 863 1. 744 1. 643
1. 4   1. 8   2. 2   2. 6   3. 4   Case 14: $t_* = 1; \frac{t_*}{t_*}$   $N_{Pr,J,w}$   0   1. 4   1. 8   2. 2   2. 6   3. 0	. 5901 . 6052 . 6177 . 6283 . 6375 . 6457 =1; $t_E$ =2; =0.709; $\frac{\rho_v}{\rho_w}$ 0. 2975 . 3212 . 3333 . 3400	1729 1753 1773 1770 1804 1817 $V_{\infty} = 14,300$ $V_{\omega} = 14,300$ $V_{\omega} = 14,300$ 0.2442 2625 2718 2768	1. 112 1. 230 1. 336 1. 434 1. 525 1. 610 fps; \$\( \text{t}_w = 0.03 \)	1. 019 1. 033 1. 045 1. 055 1. 053 1. 071 304;	2. 421 2. 188 2. 008 1. 863 1. 744 1. 643
1.8 2.2 2.6 3.0 3.4 Case 14: t _e =1; t _e /t _e 1.5 1.0 1.4 1.8 2.2 2.6 3.0 0	$\begin{array}{c} .6052 \\ .6177 \\ .6283 \\ .6375 \\ .6457 \end{array}$ $=1; t_E=2;$ $=0.709; \frac{\rho_e}{\rho_w}$ $0.2975 \\ .3212 \\ .3333 \\ .3400 \end{array}$	1753 1773 1790 1804 1817 $V_{\infty} = 14,300$ $V_{\omega} = 14,300$ 0.2442 2625 2718 2768	1. 230 1. 336 1. 434 1. 525 1. 610 fps; $\zeta_w = 0.03$	1. 033 1. 045 1. 055 1. 063 1. 071 304; $\frac{h_w}{h_B}$ =0.01	2. 188 2. 008 1. 863 1. 744 1. 643
2. 6 3. 0 3. 4 Case 14: $t_{\star}=1; \frac{t_{\star}}{t_{\star}}$ $N_{Pr,J,w}$ 0 . 5 1. 0 1. 4 1. 8 2. 2 2. 6 3. 0 3. 0	. 6283 . 6375 . 6457 =1; $t_E$ =2; =0.709; $\frac{\rho_d}{\rho_w}$ 0. 2975 . 3212 . 3333 . 3400	1790 1804 1817 $V_{\infty} = 14,300$ $v_{\omega} = 14,300$ 0.2442 2625 2718 2768	fps; \$\( \text{t}_w = 0.03 \)	1. 055 1. 063 1. 071 304; $\frac{h_w}{h_B}$ = 0.01 0. 8984 9658	1. 863 1. 744 1. 643 52;
3.0 3.4  Case 14: $t_{\epsilon}=1; \frac{t_{\epsilon}}{t_{\epsilon}}$ $N_{Pr,J,\psi}$ 0 .5 1.0 1.4 1.8 2.2 2.6 3.0	$\begin{array}{c c} .6375 \\ .6457 \\ \end{array}$ $=1; t_{E}=2;$ $=0.709; \frac{\rho_{e}}{\rho_{u}}$ $0.2975 \\ .3212 \\ .3333 \\ .3400 \\ \end{array}$	$V_{\infty} = 14,300$ $V_{\mu\mu} = 0.2940$ $V_{\infty} = 1242$ $V_{\infty} = 0.2442$	fps; \$\( \sigma = 0.03 \)  0. 2975 4182	1. 063 1. 071 304; $\frac{h_w}{h_g}$ =0.01 0. 8984 9658	52;
3.4 Case 14: $t_{\epsilon} = 1; \frac{t_{\epsilon}}{t_{\epsilon}}$ $N_{Pr}J_{\epsilon}w$ 0  .5  1.0  1.4  1.8  2.2  2.6  3.0	. 6457 =1; $t_E$ =2; =0.709; $\frac{\rho_o}{\rho_w}$ 0. 2975 . 3212 . 3333 . 3400	$V_{\infty} = 14,300$ $V_{\omega} = 14,300$ $v_{\mu\nu} = 0.2940$ $v_{\mu\nu} = 0.2442$ $v_{\mu\nu} = 0.2$	fps; \$\( \sigma = 0.03 \)  0. 2975 4182	$ \begin{array}{c c} 1.071 \\ \hline 304; \frac{h_w}{h_g} = 0.01 \\ \hline 0.8984 \\ .9658 \end{array} $	52;
$t_{s}=1; \frac{t_{s}}{t_{s}}$ $N_{Pr,f,w}$ $0$ $.5$ $1.0$ $1.4$ $1.8$ $2.2$ $2.6$ $3.0$	$=0.709; \frac{\rho_u}{\rho_u}$ $0.2975$ $.3212$ $.3333$ $.3400$	0. 2442 . 2625 . 2718 . 2768	0. 2975 . 4182	0. 8984 . 9658	0. 1266
NPr,f,w  0 .5 1.0 1.4 1.8 2.2 2.6 3.0	$=0.709; \frac{\rho_u}{\rho_u}$ $0.2975$ $.3212$ $.3333$ $.3400$	0. 2442 . 2625 . 2718 . 2768	0. 2975 . 4182	0. 8984 . 9658	0. 1266
0 .5 1.0 1.4 1.8 2.2 2.6 3.0	0. 2975 . 3212 . 3333 . 3400	0. 2442 . 2625 . 2718 . 2768	. 4182	. 9658	0. 1266
0 .5 1.0 1.4 1.8 2.2 2.6 3.0	0. 2975 . 3212 . 3333 . 3400	0. 2442 . 2625 . 2718 . 2768	. 4182	. 9658	0. 1266
. 5 1. 0 1. 4 1. 8 2. 2 2. 6 3. 0	. 3212 . 3333 . 3400	. 2625 . 2718 . 2768	. 4182	. 9658	0. 1266
1. 0 1. 4 1. 8 2. 2 2. 6 3. 0	. 3333	. 2718 . 2768	. 4182	. 9658	0.2830
1. 4 1. 8 2. 2 2. 6 3. 0	. 3400	. 2768	1 .49/1		01500
1.8 2.2 2.6 3.0	.3451		. 5468	1. 000 1. 019	01563 03774
2. 2 2. 6 3. 0	3402	. 2807	. 5894	1. 033	05391
3.0	. 0432	. 2839	. 6269	1.045	06648
	. 3527	. 2865 . 2888	.6607	1.054	07658
	. 3557 . 3583	. 2000	. 6916	1. 062 1. 070	08494 09203
3.5	. 3589	. 2907 . 2912 . 3416	. 7201 . 7269	1.071	
ω	. 4287	. 3416		1. 071 1. 257	
Case 15:			·		
$t_s=1; \frac{t_s}{t_s}$	=1; t _B =2;	$V_{\infty} = 14,300$	fps; $\zeta_w = 0.05$	5; $\frac{h_w}{h_E} = 0.025$ ;	
$N_{P au,f,w}$	$=0.681; \frac{\rho_e}{\rho_w}$	$\frac{\mu_{\theta}}{\mu_{w}} = 0.3448$			
	0.2107	0.0466	0.8105	0 0057	0.1600
0 5	0.3195	0. 2466 . 2656	0. 3195 . 4569	0. 8957 . 9650	0.1608 .05005
. 5 1. 0	. 3591	. 2753	. 5471	1. 000	. 000898
1.4	. 3664	. 2805	. 6045	1.019	—. 02380
1.8	. 3721	. 2846	. 6539	1.034	04189
2. 2 2. 6	. 3767	. 2878 . 2905	. 6976	1.046 1.055	05592 06721
3.0	. 3838	. 2929	. 7733	1.064	—. 07655
3.4	. 3866	. 2949 . 2954	. 8069 . 8149	1. 071 1. 073	08448 08628
Case 16:	1		·	1	
	=1; t _E =2;	$V_{\infty} = 14,300$	fps; ζ _w =0.07	75; $\frac{h_w}{h_B} = 0.037$	5;
				11 E	
N Pr,f,w	$=0.685; \frac{\rho}{\rho_w}$	$\frac{\mu_e}{\mu_w}$ =0.4014			
			0.3414	0. 8925	0. 2033
	0. 3414	0. 2576	. 4978	. 9640	. 07820
. 5	. 3705	. 2783			ODDOC
1.0	. 3705 . 3853	. 2783 . 2887	. 6012	1.000	.02305
.5 1.0 1.4 1.8	. 3705 . 3853 . 3933 . 3996	. 2783 . 2887 . 2943 . 2987	. 6012 . 6672 . 7244	1.000 1.020 1.035	.02305 004574 02481
.5 1.0 1.4 1.8	. 3705 . 3853 . 3933 . 3996 . 4046	. 2783 . 2887 . 2943 . 2987 . 3022	.6012 .6672 .7244 .7752	1.000 1.020 1.035 1.047	. 02305 004574 02481 04048
.5 1.0 1.4	. 3705 . 3853 . 3933 . 3996	. 2783 . 2887 . 2943 . 2987	. 6012 . 6672 . 7244	1.000 1.020 1.035	.02305 004574 02481

β	g'	\$' _w	f"	$\frac{\zeta_w'}{\zeta_w'(\beta=1)}$	$\Delta_{tr}^{\bullet}$
case 1	<u>.</u> 7:	! <u>.</u>	'		
t.=1;	$t_{\bullet}=1; t_{B}=2$	$V_{\infty} = 14,300$	fps; ζ _w =0.1	$0; \frac{h_w}{h_w} = 0.05;$	
	-			14 B	
IV Pr.	$f, w=0.699; \frac{\rho}{\rho}$	— =0.4497 _{εμω}			
.5 1.0 1.4 1.8	0.3584 .3900 .4059 .4146 .4214 .4268	0. 2679 . 2901 . 3012 . 3072 . 3119 . 3156	0. 3584 . 5315 . 6465 . 7202 . 7844 . 8413	0. 8894 . 9631 1. 000 1. 020 1. 036 1. 048	0. 2437 . 1057 . 04528 . 01505 0 02417
1. 8 2. 2 2. 6 3. 0 3. 4	. 4313 . 4352 . 4386 . 4394	.3187 .3214 .3237 .3243	. 8932 . 9409 . 9854 . 9961	1. 058 1. 067 1. 075 1. 077	03796 04933 08799 06119
ase 18	' · · · <u>-</u> · · · · · · · · · · · · · · · · · · ·		1		<del></del>
		$V_{\infty} = 14,300$	fps: ζ _w =0.2	$0: \frac{h_w}{100} = 0.100$	
			.p.,, g 0.=	, h _E ,	
NPr,	$f_{\nu} = 0.768; \frac{\rho}{\rho}$	=0,5790 vµ w			
0 .5 1.0 1.4 1.8 2.2 2.6 3.0 3.4	0. 3965 . 4352 . 4545 . 4649 . 4729 . 4795 . 4848 . 4896 . 4937 . 4945 . 6079	0. 2890 . 3155 . 3285 . 3356 . 3410 . 3454 . 3490 . 3521 . 3548 . 3555 . 4280	0. 3965 . 6205 . 7705 . 8677 . 9526 1. 029 1. 098 1. 162 1. 222 1. 237	0.8796 .9603 1.000 1.021 1.038 1.051 1.062 1.072 1.080 1.082 1.303	0.3831 .2044 .1278 .08982 .06210 .04073 .02353 .009336 —.00268 —.00537
ase 1	9:			·	
t.=1;	$\frac{t_e}{t} = 1; t_B = 1$	$V_{\infty} = 20,400$	fps; $\zeta_w = 0.0$	0152; $\frac{h_w}{h_w} = 0.01$	152;
	$f_{*w} = 0.709; \frac{\rho}{\rho}$				
0 _	0. 2652	0. 2230	0. 2652	0.8977	0. 1173
. 5 1. 0 1. 4 1. 8 2. 2	. 2867 . 2978 . 3038 . 3085 . 3123 . 3154 . 3182 . 3205 . 3847	. 2399 . 2485 . 2531 . 2567 . 2596 . 2621 . 2641 . 2659 . 3131	. 3752 . 4470 . 4924 . 5314 . 5657 . 5966 . 6248 . 6508	. 9654 1. 000 1. 019 1. 033 1. 045 1. 055 1. 063 1. 070 1. 260	. 02835 01139 03142 04610 05752 06670 07430 08079
2.6 3.0	.0021				
2. 6 3. 0 3. 4 ∞	1		<u>.l</u>	1	
2. 6 3. 0 3. 4 ∞ Case 20 t _* =1;	$ t_{B} $ $ t_{B} $ $ t_{B} $ $ t_{B} $	$V_{\infty} = 20,400$	fps; ζ _w =0.0	$3; \frac{h_w}{h_B} = 0.03;$	
2.6 3.0 3.4 \$\infty\$ Case 20 \$t_*=1;	$\begin{cases} t_{s} \\ t_{s} = 1; t_{B} = 1; \\ t_{s} = 0.680; \frac{\rho}{c} \end{cases}$		fps; ζ _w =0.0	$3; \frac{h_w}{h_B} = 0.03;$	

	g' _w	3.	f'' _w	$\frac{\zeta'_w}{\zeta'_w(\beta=1)}$	Δ.
Case 2	l <b>:</b>				
t.=1;	$\frac{t_e}{t_o}=1$ ; $t_B=1$	$V_{\infty} = 20,400$	fps; ζ _w =0.0	$5; \frac{h_w}{h_B} = 0.05;$	
$N_{P\tau}$ ,	$\rho_{v} = 0.699; \frac{\rho_{v}}{\rho_{v}}$	$\frac{e\mu}{w\mu} = 0.3550$			
0 . 5 1. 0 1. 4 1. 8 2. 2 2. 6 3. 0 3. 4 3. 5	0. 3230 . 3506 . 3646 . 3722 . 3782 . 3830 . 3870 . 3905 . 3935 . 3942	0. 2580 . 2785 . 2889 . 2945 . 2988 . 3023 . 3053 . 3078 . 3099 . 3104	0. 3230 . 4705 . 5682 . 6306 . 6845 . 7324 . 7758 . 8157 . 8527 . 8616	0. 8932 . 9641 1. 000 1. 019 1. 034 1. 047 1. 057 1. 065 1. 073 1. 075	0. 1869 .0699 .0170 0084 0272 0542 0641 0728
Case 22	! <b>!:</b>				<u> </u>
t.=1;	$\frac{t_{\bullet}}{t_{\bullet}}=1$ ; $t_{B}=1$	$V_{\infty} = 20,400$	fps; $\zeta_w = 0.0$	$h_{E} = 0.07$	5;
$N_{P_7}$ .	$f_{,w} = 0.735; \frac{\rho}{\rho}$	$\frac{e\mu\sigma}{\omega\mu\omega} = 0.4146$			
0	0, 3461	0. 2832	0.3461	0. 8904	0.2290
1. 0 1. 4 1. 8 2. 2 2. 6 3. 0 3. 4 3. 5	. 3765 . 3920 . 4004 . 4069 . 4122 . 4166 . 4204 . 4237	. 3064 . 3180 . 3243 . 3292 . 3382 . 3364 . 3393 . 3417	. 5127 . 6235 . 6947 . 7564 . 8114 . 8614 . 9074 . 9502	. 9634 1. 000 1. 020 1. 035 1. 048 1. 058 1. 067 1. 074	. 097 . 039 . 0100 0112 027 0410 0520 0612 063
3. 5	. 4245	. 3423	. 9605	1.076	0633
3. 5 Case 20	. 4245	. 3423	. 9605	1.076	063
Case 2	1 . 4245 3:	$V_{\infty} = 20,400$		¹ - ··· <del></del>	0633
Case 23	1 . 4245 3:	$3423$ ; $V_{\infty} = 20,400$		¹ - ··· <del></del>	063
Case 23	3: $\frac{t_s}{t_s} = 1; t_B = 1$	$3423$ ; $V_{\infty} = 20,400$		¹ - ··· <del></del>	0. 265: 121: 0.599; 0.277; 0.051; -0.012; -0.027; -0.031; -0.048; -0.048; -0.051;
Case 23  l _s =1;  N _{Pr} ,  0  .5 1.0 1.4 1.8 2.2.6 3.0 3.4 3.5 Case 22	3: $\frac{t_e}{t_s} = 1; t_E = 1$ $f, w = 0.768; \frac{\rho}{\rho}$ $0.3607$ $.3933$ $.4098$ $.4187$ $.4257$ $.4313$ $.4360$ $.4440$ $.4436$ $.44444$	$V_{\infty} = 20,400$ $\frac{e^{\mu_{\phi}}}{4\pi^{2}\mu_{\phi}} = 0.4571$ $0.3004$ $0.304$ $0.304$ $0.304$ $0.304$ $0.304$ $0.304$ $0.304$ $0.304$ $0.304$ $0.304$ $0.304$ $0.304$ $0.304$ $0.304$ $0.304$ $0.304$ $0.304$ $0.304$ $0.304$ $0.304$ $0.304$ $0.304$ $0.304$ $0.304$ $0.304$ $0.304$ $0.304$ $0.304$ $0.304$ $0.304$ $0.304$ $0.304$	fps; $\zeta_{w} = 0.1$ 0.3607 5422 6633 7414 8092 8698 9249 9758 1.023 1.035	0; \(\frac{h_w}{h_B} = 0.10;\) 0.8880 9627 1.000 1.020 1.036 1.048 1.059 1.068 1.078	0. 265 . 121' . 059 . 027' . 005 - 012 027' 038 048 051
Case 2: $t_s=1$ ; $N_{Pr}$ , $0$ . 5 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.5 Case 2: $t_s=1$ ;	3: $\frac{t_e}{t_s} = 1; t_B = 1$ $f. w = 0.768; \frac{\rho}{\rho}$ $0.3607$ $.3933$ $.4098$ $.4187$ $.4257$ $.4313$ $.4360$ $.4440$ $.4436$ $.4444$ 4: $\frac{t_s}{t_s} = 0.8; t_B = 0$	$V_{\infty} = 20,400$ $V_{\infty} = 20,400$ $V_{\infty} = 20,400$ $V_{\infty} = 20,400$ $V_{\infty} = 0.4571$	fps; $\zeta_{w} = 0.1$ 0.3607 5422 6633 7414 8092 8698 9249 9758 1.023 1.035	0; \(\frac{h_w}{h_B} = 0.10;\) 0.8880 9627 1.000 1.020 1.036 1.048 1.059 1.068 1.078	0. 265: .121: .059; .027: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005
Case 2: $t_s=1$ ; $N_{Pr}$ , $0$ . 5 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.5 Case 2: $t_s=1$ ;	3: $\frac{t_{\bullet}}{t_{\star}} = 1; t_{E} = 1$ $f{\star} = 0.768; \frac{\rho}{\rho}$ $0.3607$ $.3933$ $.4098$ $.4187$ $.4257$ $.4313$ $.4360$ $.4401$ $.4360$ $.4444$ 4: $t_{\star} = 0.8; t_{E} = 0.709; \frac{\rho}{\rho}$	$V_{\infty} = 20,400$ $V_{\infty} = 20,400$ $V_{\infty} = 20,400$ $V_{\infty} = 20,400$ $V_{\infty} = 0.4571$	fps; $\zeta_{w} = 0.1$ 0.3607 5422 6633 7414 8092 8698 9249 9758 1.023 1.035	0; \(\frac{h_w}{h_B} = 0.10;\) 0.8880 9627 1.000 1.020 1.036 1.048 1.059 1.068 1.078	0. 265: .121: .059; .027: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005: .005

# TABLE III.—TABLES OF SIMILAR SOLUTIONS FOR EQUILIBRIUM DISSOCIATED AIR, F=0 ( $N_{Le}=1$ )—Con. (a) Heat-transfer cases—Continued

β	$g_{m{v}}^{'}$	ζ' _ω	$f_{w}^{"}$	$\frac{\zeta'_{w}}{\zeta'_{w}(\beta=1)}$	Δ* _{tr}	β	g'w	\$ 'w	f'' _w	$\frac{\zeta_w'}{\zeta_w'(\beta=1)}$	Δ* _{tr}
Case 25	i:					Case 29					
t.=1;	$\frac{t_s}{t_s}$ =0.6; $t_E$ =	1; $V_{\infty} = 20,40$	0 fps; ζω=0.	.0152; $\frac{h_w}{h_E} = 0.0$	0152;	t _s =1;	$t_s = 0.6; t_B =$	=1; $V_{\infty} = 20,40$	00 fps; ζ _w =0	.03; $\frac{h_w}{h_B} = 0.03$ ;	;
$N_{Pr,f}$	$\rho_{w}=0.709; \frac{\rho}{\rho_{v}}$	$e^{\mu}_{\nu}=0.2763$				$N_{P\tau}$	$f_{\nu} = 0.680; \frac{f}{\rho}$	$\frac{\partial e\mu_{\delta}}{\omega \mu_{\omega}} = 0.3462$			
0 1. 0 1. 4 1. 8 2. 2 2. 6 3. 0 3. 3	0. 2764 . 2975 . 3093 . 3159 . 3212 . 3255 . 3291 . 3323 . 3344	0. 2189 . 2340 . 2423 . 2470 . 2507 . 2537 . 2563 . 2585 . 2599	0. 2764 .3718 .4360 .4768 .5119 .5428 .5707 .5961 .6138	0. 9035 . 9656 1. 000 1. 019 1. 035 1. 047 1. 058 1. 067 1. 073	0. 2577 .1349 .07491 .04374 .02049 .002271 01251 02483	0 1.0 1.4 1.8 2.2 2.6 3.0	0. 3071 .3311 .3444 .3519 .3578 .3627 .3669 .3704	0. 2293 . 2454 . 2543 . 2593 . 2632 . 2664 . 2692 . 2715	0. 3071 4181 4933 .5415 .5830 .6198 .6531 .6835	0. 9018 . 9652 1. 000 1. 020 1. 035 1. 048 1. 059 3. 068	0.2926 .1717 .1028 .06706 .04041 .01955 .00262 —.01148
Case 26	:		<del>'</del> -			Case 30				h	
t.=1;	$\frac{t_{\sigma}}{t} = 0.4$ ; $t_B =$	1; V _∞ =20,40	0 fps; ζ _w =0.	0152; $\frac{h_w}{h_R} = 0.0$	0152;	$t_s=1;$	$\frac{t_s}{t_s}$ =0.4; $t_E$ =	1; $V_{\infty} = 20,40$	00 fps; $\zeta_w = 0$ .	$03; \frac{h_B}{h_B} = 0.03;$	;
	$\rho_{,w} = 0.709; \frac{\rho_{,w}}{\rho_{,w}}$			n E		N _{Pr} ,	$f_{\bullet w} = 0.680; \frac{\rho}{\rho}$	$\frac{e\mu_{\sigma}}{w\mu_{\varpi}} = 0.3977$			
	, ω , ρι	·μ _w				0	0.3153	0. 2286	0.3153	0. 9039	0. 5135
0 1.0 1.4 1.8 2.2 2.6 3.0 3.4	0. 2840 . 3049 . 3172 . 3244 . 3301 . 3348 . 3423 . 3454	0. 2185 . 2329 . 2413 . 2461 . 2500 . 2532 . 2559 . 2583 . 2604	0. 2840 .3707 .4304 .4686 .5015 .5306 .5567 .5806 .6027	0. 9055 . 9652 1. 000 1. 020 1. 036 1. 050 1. 061 1. 071 1. 080	0. 4294 . 2682 . 1855 . 1416 . 1085 . 08248 . 06123 . 04348	1. 0 1. 4 1. 8 2. 2 2. 6 3. 0 3. 4	3391 .3530 .3611 .3675 .3729 .3775 .3815 .3849	. 2439 . 2528 . 2528 . 2580 . 2621 . 2655 . 2684 . 2710 . 2732	. 4163 . 4862 . 5312 . 5701 . 6047 . 6359 . 6645 . 6909	0.9059 .9646 1.000 1.020 1.037 1.050 1.062 1.072 1.080	. 3279 . 2329 . 1825 . 1445 . 1147 . 09034 . 06999 . 05264
Case 27	:		1			Case 31				h	
$t_*=1;$	$\frac{t_e}{t} = 0.2; t_B =$	1; V _∞ =20,40	0 fps; ζ _w =0.	.0152; $\frac{h_w}{h_w} = 0.0$	0152;	$t_{\bullet}=1;$	$\frac{t_s}{t_s}$ =0.2; $t_B$ =	1; $V_{\infty} = 20,40$	00 fps; $\zeta_w = 0$ .	03; $\frac{hw}{hE}$ = 0.03;	;
N _{Pr.}	$\rho_{,w} = 0.709; \frac{\rho}{\rho_{1}}$	$\frac{e^{\mu}e}{}=0.4028$				$N_{P au}$	$f_{,w} = 0.680; \frac{\rho}{\rho}$	$\frac{e\mu}{w\mu} = 0.5048$			
0 1.0 1.4 1.8 2.2 2.6 3.0 3.4	0. 2941 .3149 .3281 .3360 .3424 .3479 .3526 .3567 .3604	0. 2200 2339 2427 2479 2522 2558 2589 2617 2642	0. 2941 .3701 .4241 .4592 .4895 .5164 .5407 .5629 .5834	0. 9065 . 9638 1. 000 1. 022 1. 039 1. 054 1. 067 1. 078 1. 089	0. 9216 . 6591 . 5147 . 4363 . 3766 . 3291 . 2901 . 2574 . 2295	0 .5 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.5	0. 3263 . 3500 . 3649 . 3738 . 3811 . 3872 . 3925 . 3972 . 4013 . 4023	0. 2298 . 2446 . 2539 . 2595 . 2640 . 2678 . 2712 . 2741 . 2767 . 2773	0. 3263 4146 4778 5189 5546 5865 6153 6417 6663 6721	0. 9052 . 9633 1. 000 1. 022 1. 040 1. 055 1. 068 1. 080 1. 090 1. 092	1. 085 .7834 .6175 .5274 .4589 .4044 .3597 .3222 .2901 .2825
Case 28	);			<del></del>		Case 32	2:				
t _s =1;	$\frac{t_s}{t_s} = 0.8; t_B =$	1; $V_{\infty} = 20,40$	0 fps; ζ _w =0	$.03; \frac{h_w}{h_B} = 0.03$		$t_s = 1;$	$\frac{t_o}{t_s}$ =0.8; $t_B$ =	1; $V_{\infty} = 20,40$	00 fps; ζ _w =0	.10; $\frac{h_w}{h_B} = 0.10$ ;	
$N_{P au,j}$	$r, w = 0.680; \frac{\rho}{\rho}$	$\frac{\epsilon \mu \epsilon}{\kappa \mu w} = 0.3139$				$N_{Pr}$	$f, w = 0.768; \frac{\rho}{\rho}$	$\frac{e\mu e}{w\mu w} = 0.4932$			
0 .5 1.0 1.4 1.8 2.2 2.6 3.0 3.1	0. 3004 . 3247 . 3375 . 3446 . 3502 . 3548 . 3586 . 3619 . 3626	0. 2313 . 2483 . 2573 . 2622 . 2661 . 2692 . 2719 . 2741 . 2746	0. 3004 . 4203 . 5002 . 5511 . 5950 . 6338 . 6689 . 7010 . 7086	0. 8989 . 9652 1. 000 1. 019 1. 034 1. 046 1. 057 1. 065 1. 067	0.2107 .09301 .03832 .01042 01018 02625 03925 05005 05247	0 1. 0 1. 4 1. 8 2. 2 2. 6 3. 0 3. 3	0. 3671 . 3994 . 4163 . 4257 . 4330 . 4390 . 4440 . 4483 . 4512	0. 2955 . 3191 . 3314 . 3381 . 3433 . 3476 . 3512 . 3542 . 3563	0. 3671 - 5377 - 6530 - 7276 - 7925 - 8504 - 9032 - 9519 - 9862	0. 8918 .9631 1.000 1.020 1.036 1.049 1.060 1.069 1.075	0. 3574 . 1925 . 1173 . 07915 . 05101 . 02909 . 01142 — . 003251

# TABLE III.—TABLES OF SIMILAR SOLUTIONS FOR EQUILIBRIUM DISSOCIATED AIR, F=0 ( $N_{Le}=1$ )—Con. (a) Heat-transfer cases—Continued

β	g' _w	\$ <b>`</b> _	f'' _w	$\left  \frac{\zeta_{w}}{\zeta_{w}'(\beta=1)} \right $	$\Delta_{tr}^{\bullet}$
Case 33	3;				
$t_{*}=1;$	$\frac{t_{\bullet}}{t_{\bullet}}$ =0.6; $t_{E}$ =	1; $V_{\infty} = 20,40$	0 fps; $\zeta_w = 0$ .	10; $\frac{h_w}{h_B} = 0.10$ ;	
N _{Pr} ,	$r_{m} = 0.768 \cdot \frac{\rho}{r_{m}}$	$\frac{\mu_{s}}{\mu_{w}} = 0.5440$			
0 1.0 1.4 1.8 2.2 2.6 3.0 3.4	0.3747 .4067 .4242 .4341 .4419 .4483 .4537 .4584 .4625	0. 2916 .3137 .3257 .3324 .3377 .3420 .3457 .3489 .3517	0. 3747 . 5330 . 6419 . 7125 . 7740 . 8291 . 8792 . 9255 . 9686	0. 8952 . 9632 1. 000 1. 021 1. 037 1. 050 1. 061 1. 071 1. 080	0. 5075 .3092 .2142 .1652 .1288 .1003 .07718 .05799
Case 3	·' — -· ' 4:		'	' <del>-</del>	
		1; $V_{\infty} = 20,40$	00 fps; ζ _w =0	.10; $\frac{h_w}{h_B} = 0.10$ ;	;
$N_{Pr}$	$f_{\text{Lir}} = 0.768; \frac{\rho_{\text{C}}}{\rho_{\text{H}}}$	=0.6249			
0 . 5 1. 0 1. 4 1. 8 2. 2 2. 6 3. 0 3. 4 3. 5	0. 3840 4156 4340 4445 4530 4600 4660 4712 4758 4769	0. 2891 3099 3219 3288 3342 3388 3427 3461 3491	0.3840 .5280 .6291 .6951 .7528 .8044 .8514 .8948 .9353	0. 8980 . 9628 1. 000 1. 021 1. 038 1. 053 1. 065 1. 075 1. 085 1. 087	0. 7976 . 5376 . 4062 . 3369 . 2850 . 2441 . 2108 . 1829 . 1593 . 1539
Case 3			· -		
$t_r=1$ ; $N_{Pr}$	$t_s = 0.2; t_B = 0.768; t_S = 0.768; t_D =$	1; $V_{\infty} = 20,40$ $\frac{\mu_{\sigma}}{\mu_{w}} = 0.7931$	0 fps; ζ _w =0.	10; $\frac{h_w}{h_B} = 0.10$ ;	
0 .5 1.0 1.4 1.8 2.2 2.6 3.0 3.4	0. 3965 . 4276 . 4471 . 4588 . 4684 . 4764 . 4833 . 4891 . 4948 . 4961	0. 2889 .3086 .3209 .3283 .3343 .3394 .3438 .3476 .3510 .3518	0. 3965 . 5218 . 6126 . 6725 . 7250 . 7721 . 8152 . 8549 . 9920 . 9009	0. 9002 . 9616 1. 000 1. 023 1. 042 1. 058 1. 071 1. 083 1. 094 1. 096	1, 613 1, 192 9635 8393 7449 6700 6086 5571 5131 5030
Case 3	6:		٠.		
		5; $V_{\infty} = 29,00$	0 fps; $\zeta_w = 0$	.0076; $\frac{h_{\omega}}{h_{B}} = 0.0$	)152;
$N_{Pr}$	$f. w = 0.709; \frac{\rho}{\rho}$	$\frac{e^{\mu} e}{e^{\mu} w} = 0.1835$			
0 .5 1.0 1.4 1.8 2.2	0. 2362 . 2556 . 2655 . 2709 . 2751 . 2786	0. 2036 . 2190 . 2268 . 2310 . 2343 . 2369	0. 2362 . 3357 . 4008 . 4421 . 4775 . 5088	0. 8978 . 9656 1. 000 1. 019 1. 033 1. 045	0. 1117 . 03141 004481 02255 03582 04613

β	g'w	٢.	f"	$\frac{\zeta_{\omega}}{\zeta_{\omega}'(\beta=1)}$	$\Delta_{tr}^{\bullet}$
Case 37	7:				
t,=1;	$t_{B}=1; t_{B}=0.1$	5; V _∞ =29,00	0 fps; ζ _w =0.	02; $\frac{h_w}{h} = 0.04$ ;	
	$r_{\text{u}} = 0.687; \frac{\rho_{\text{u}}}{\rho_{\text{u}}}$			n g	
	ρω	$\mu_w$			
0 .5 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.5	0. 2778 . 3010 . 3128 . 3193 . 3243 . 3284 . 3318 . 3347 . 3373 . 3379	0. 2293 . 2469 . 2558 . 2607 . 2644 . 2674 . 2700 . 2721 . 2740 . 2744	0. 2778 .3994 .4794 .5303 .5742 .6132 .6484 .6807 .7105	0.8962 .9651 1.000 1.019 1.034 1.045 1.055 1.064 1.071	0. 1462 . 04882 . 005505 01631 03227 04468 05466 06205 06998
Case 38	1 1 3:			·	
		5; $V_{\infty} = 29,00$	Ofner t = 0	05: hw _ 0 10:	
			$0.1198; \zeta_w = 0.$	$h_{B} = 0.10;$	
$N_{Pr}$	$f_{vw} = 0.768; \frac{\rho_{w}}{\rho_{w}}$	=0.3613			
0 .5 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.5	0. 3257 . 3539 . 3682 . 3760 . 3820 . 3869 . 3911 . 3946 . 3977 . 3984 . 4838	0. 2918 .3150 .3267 .3331 .3380 .3419 .3452 .3480 .3505 .3511 .4163	0. 3257 .4784 .5798 .6448 .7012 .7513 .7969 .8388 .8778 .8872	0.8930 .9642 1.000 J.019 1.034 J.046 1.057 1.065 1.073 1.074	0. 2057 .08436 .03085 .004021 01565 03090 04321 05335 06196 06394
Case 3	) 9:			'. <u> </u>	1
		0.5; $V_{\infty} = 29$ ,	000 fps: と≡	$0.05: \frac{h_w}{-} = 0.1$	0:
	$t_{\star} = 0.768; \frac{\rho}{\rho}$		000 11111, 3 16	h _B	,
0	0. 3317	0. 2871	0. 3317	0.8971	0. 2713
. 5 1. 0 1. 4 1. 8 2. 2 2. 6 3. 0 3. 2	. 3595 . 3742 . 3824 . 3888 . 3940 . 3984 . 4022 . 4039	. 3087 . 3201 . 3263 . 3312 . 3351 . 3385 . 3413 . 3426	. 4745 . 5710 . 6331 . 6869 . 7349 . 7785 . 8185 . 8375	. 9646 1. 000 1. 020 1. 035 1. 047 1. 057 1. 066 1. 070	. 1342 . 07082 . 03855 . 01470 00391 01894 03146
Case 4	0:				
		0.5; V = 29,	000 fps; ζ _u =	$0.05; \frac{h_w}{h_w} = 0.05$	10;
$t_s = 1$		$0.5; V_{\infty} = 29,$ $\frac{e\mu}{e\mu} = 0.4297$	000 fps; ζ _w =	$0.05; \frac{h_w}{h_R} = 0.$	10;

				v			
β	g' _w	٢'.	f'' _w	$\frac{\zeta'_{w}}{\zeta'_{w}(\beta=1)}$	$\Delta_{tr}^{\bullet}$	$\beta$ $g'_w$ $\zeta'_w$ $f''_w$ $g'_w$	$\frac{d^2}{d\theta}$ $\Delta_{tr}^*$
Case 41	:				_	Case 45:	
t,=1;	$\frac{t_s}{t_s}$ =0.4; $t_E$ =	=0.5; $V_{\infty} = 29$ ,	000 fps; ൃ⊭=	$0.05; \frac{h_w}{h_B} = 0.1$	0;	$t_s = 0.333; \frac{t_s}{t_s} = 1; t_B = 21.9; \ V_{\infty} = 3,600 \text{ fps}; \ \zeta_w = 2.19$	$3; \frac{h_w}{h_R} = 0.100;$
$N_{Pr,f}$	$r_{,w} = 0.768; \frac{1}{\rho}$	$\frac{\rho_{e}\mu_{e}}{\sigma_{w}\mu_{w}} = 0.4932$				$N_{Pr,\prime,w}=0.768; \frac{\rho r \mu_e}{\rho_w \mu_w}=1.969$	
0 .5 1.0 1.4 1.8 2.2 2.6 3.0 3.4	0. 3477 . 3748 . 3907 . 3999 . 4073 . 4134 . 4187 . 4233 . 4273	0. 2800 2988 3098 3162 3213 3256 3292 3324 3351	0. 3477 .4672 .5511 .6057 .6532 .6957 .7343 .7698 .8028	0. 9036 . 9645 1. 000 1. 021 1. 037 1. 051 1. 062 1. 073 1. 082	0. 6235 . 4121 . 3034 . 2458 . 2024 . 1681 . 1401 . 1167 . 09678	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	148 6, 731 40 5, 843 41 5, 461 71 5, 202 95 5, 012 14 4, 866 29 3, 383
Case 42:	:	- · · · ·				Case 46:	-
t _s =1;	$\frac{t_e}{t_s} = 0.2; t_B =$	$=0.5; V_{\infty} = 29,$	000 fps; ζ _{ιε} =	$0.05; \frac{h_w}{h_E} = 0.10$	0;	$t_s = 0.333; \frac{t_s}{t_s} = 1; t_R = 3.333; V_{\infty} = 11,000 \text{ fps}; \zeta_w = 0.00$	$0.5066; \frac{h_w}{h_R} = 0.0152;$
$N_{Pr,f}$	$v_{vw} = 0.768; \frac{h}{\rho}$	$\frac{\sigma_{e}\mu_{e}}{\sigma_{w}\mu_{w}} = 0.6249$				$N_{Pr,c,w} = 0.709; \frac{\rho_{e}\mu_{e}}{\rho_{w}\mu_{w}} = 0.5122$	
0 .5 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.5	0. 3595 . 3860 . 4028 . 4129 . 4212 . 4283 . 4344 . 4398 . 4446 . 4457	0. 2794 . 2971 . 3084 . 3152 . 3208 . 3255 . 3296 . 3332 . 3365 . 3373	0. 3595 .4623 .5369 .5860 .6291 .6676 .7027 .7351 .7652 .7724	0. 9060 . 9634 1. 000 1. 022 1. 040 1. 055 1. 069 1. 081 1. 091 1. 094	1. 268 . 934 I . 7491 . 6478 . 5704 . 5087 . 4580 . 4153 . 3788 . 3704	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	492 .4387 00 .3359 14 .2869 46 .2519 54 .2254 39 .2044 81 .1872 94
Case 43:		.'	' <i>-</i>			Case 47:	
t,=0.3	$333; \frac{t_s}{t_s} = 1; t_s$	$_{B}$ =21.9; $V_{\infty}$ =	3,600 fps; \$ u	$=0.3333; \frac{h_{ir}}{h_{E}}=$	=0.0152;	$t_{*}=0.333; \frac{t_{*}}{t_{*}}=1; t_{B}=3.333; V_{\infty}=11,000 \text{ fps; } \zeta_{w}=0.13$	15; $\frac{h_w}{h_R} = 0.045$ ;
$N_{Pr,f}$	$t_{s,w} = 0.709; \frac{R}{\rho}$	$\frac{\sigma \epsilon \mu \epsilon}{w \mu w} = 1.000$				$N_{P,\cdot,\cdot,u}=0.693; \frac{\rho_{e}\mu_{e}}{\rho_{w}\mu_{w}}=0.7513$	
0 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.5	0. 4540 .5476 .5858 .6053 .6199 .6314 .6409 .6489 .6558 .6574 .8271	0. 2256 2725 2917 3014 3087 3145 3192 3232 3267 3275 4096	0. 4540 1. 053 1. 426 1. 662 1. 867 2. 049 2. 214 2. 366 2. 508 2. 542	0.7735 .9344 1.000 1.033 1.059 1.078 1.095 1.108 1.120 1.123 1.404	2. 055 1. 368 1. 138 1. 032 9577 9017 . 8578 . 8222 . 7926 . 7859	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1440
Case 44:	:					Case 48:	
t,=0,3	$333; \frac{t_{e}}{t_{s}} = 1; t_{s}$	E=21.9; Γ _∞ =	3,600 fps; ζ ₁ ,	$=1.000; \frac{h_{u}}{h_{B}}=$	0.0456;	$t_{\star} = 0.333; \frac{t_{e}}{t_{\star}} = 1; t_{E} = 3.333; V_{\infty} = 11,000 \text{ fps}; \zeta_{w} = 0.3$	333; $\frac{h_w}{h_E} = 0.100$ ;
$N_{Pr}$	$w = 0.693; \frac{\mu}{\rho}$	$\frac{\partial e\mu e}{\partial u\mu u} = 1.475$				$N_{Pr,',w} = 0.768; \frac{\rho_r \mu_r}{\rho_w \mu_w} = 1.009$	
0 1.0 1.4 1.8 2.2 2.6 3.0 3.3	0. 4944 . 6634 . 7231 . 7528 . 7748 . 7921 . 8062 . 8180 . 8258	-0. 05294 06279 06592 06736 06836 06910 06968 07014 07043	0. 4944 1. 820 2. 635 3. 156 3. 610 4. 016 4. 387 4. 731 4. 974	0.8031 - 9625 1.000 1.022 1.037 1.048 1.057 1.064 1.069	5. 645 3. 708 3. 190 2. 961 2. 803 2. 686 2. 596 2. 523	0         0.4490         0.2386         0.4490         0.78           .5         .5335         .2838         .9965         .98           1.0         .5690         .3027         1.345         1.0           1.4         .5874         .3125         1.568         1.0           1.8         .6012         .3199         1.761         1.0           2.2         .6121         .3258         1.935         1.0           2.6         .6212         .3306         2.083         1.0           3.0         .6289         .3347         2.240         1.16           3.4         .6355         .3382         2.376         1.11	174 1. 19 r 190 .9860 192 .8907 197 .8235 196 .7728 192 .7329 195 .7003

β	g' _w	₹′	$f''_w$		Δ*,	β	g' _w	5 'w	$f_{w}^{\prime\prime}$		$\Delta_{tr}^{*}$
	"			ζ' _ω (β=1)						ζ' _w (β=1)	
Case 49					hw a a see	Case 53		0 000. TT	07 100 5		hw acres
	· -		=11,000 ips	s; ç = 0.05000	$6; \frac{h_w}{h_R} = 0.0152;$			$=3.333; V_{\infty}$	=25,100 lps;	ς _w =0.01013;	$\overline{h_R} = 0.0152;$
$N_{Pr,i}$	$\rho_{vw} = 0.709; \frac{\rho_{e}}{\rho_{w}}$	$\frac{\mu_{\theta}}{\mu_{\theta}} = 0.5537$				$N_{P\tau,j}$	$r_{w}=0.709; \frac{\rho}{\rho_{w}}$	$\frac{e\mu_e}{e\mu_w} = 0.2940$			
0 .5 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.5	0. 3517 . 4007 . 4234 . 4354 . 4446 . 4519 . 4680 . 4631 . 4676 . 4686	0. 2591 . 2942 . 3104 . 3189 . 3254 . 3306 . 3349 . 3385 . 3416 . 3423	0. 3517 . 6074 . 7675 . 8674 . 9526 1. 027 1. 095 1. 156 1. 212 1. 226	0. 8347 . 9479 1. 000 1. 027 1. 048 1. 065 1. 079 1. 090 1. 101 1. 103	0. 9348 . 6055 . 4735 . 4097 . 3639 . 3289 . 3012 . 2785 . 2596 . 2553	0 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.5	0. 2683 . 3042 . 3206 . 3293 . 3358 . 3411 . 3454 . 3491 . 3522 . 3530 . 4314	0. 2058 2329 2452 2517 2566 2605 2637 2665 2688 3014 3261	0. 2683 4621 .5828 .6581 .7221 .7784 .8288 .8747 .9170	0.8391 .9497 1.000 1.026 1.046 1.062 1.075 1.087 1.096 1.098 1.330	0. 4915 . 2990 . 2240 . 1879 . 1621 . 1424 . 1268 . 1141 . 1034 . 1010
Case 50					h .	Case 5					·
$t_s = 0.1$	333; $\frac{c}{t_s} = 0.6$ ; $t$	r = 3.333; Γ _α	$_{\infty} = 11,000 \text{ fps}$	$\xi; \zeta_u = 0.05066$	6; $\frac{h_w}{h_E} = 0.0152$ ;	t,=0.	333; $\frac{t_{\bullet}}{t_{\bullet}} = 1$ ; $t_{B}$	=3,333; V _∞	=25,100 (ps;	$\zeta_{u}=0.040; \frac{h_{u}}{h_{I}}$	=0.060;
$N_{Pr}$	$f_{,w} = 0.709; \frac{\rho}{\rho_{u}}$	$e^{\mu}_{-}^{e} = 0.6125$				$N_{Pr}$	$\rho_{vw} = 0.711; \frac{\rho_{vw}}{\rho_{vw}}$	$\frac{e^{\mu}e}{\mu_w} = 0.483$			
0 .5 1.0 1.4 1.8 2.2 2.6	0. 3563 . 4065 . 4307 . 4437 . 4537 . 4618 . 4686	0, 2597 , 2948 , 3116 , 3206 , 3275 , 3330 , 3376	0. 3563 . 6065 . 7656 . 8655 . 9506 1. 026	0. 8333 . 9462 1. 000 1. 029 1. 051 1. 069 1. 083	1. 299 . 8682 . 6881 . 5995 . 5355 . 4865	0 . 5 1. 0 1. 4 1. 8 2. 2 2. 6	0. 3383 . 3857 . 4072 . 4184 . 4270 . 4338 . 4395	0. 2511 . 2858 . 3014 . 3096 . 3158 . 3208 . 3229	0. 3383 . 6059 . 7747 . 8811 . 9724 1. 053 1, 126	0.8331 .9482 1.000 1.027 1.048 1.064 1.078	0. 7059 . 4419 . 3404 . 2919 . 2572 . 2308 . 2099
3. 0 3. 3	. 4743 . 4781	. 3415 . 3441	1. 154 1. 197	1. 096 1. 104	. 4153	3. 0 3. 4	. 4443 . 4484	. 3283 . 3313	1. 193 1. 255	1. 089 1. 099	. 1928
3. 0 3. 3	. 4743 . 4781		1. 154 1. 197	1.096	. 4153	3. 0 3. 4	. 4484	. 3283 . 3313		1.089	. 1928
3. 0 3. 3 Case 51	. 4743 . 4781	. 3441	I. 197	1. 096	.4153	3. 0 3. 4 Case 55	. <b>4484</b> i:	. 3313	1. 255	1. 089 1. 099	
3. 0 3. 3 Case 51 $t_s = 0.3$	$\begin{vmatrix} .4743 \\ .4781 \end{vmatrix}$ 1: $333; \frac{t_c}{t_s} = 0.4; t$	. 3441 _E =3.333; V	I. 197	1. 096	. 4153	$3.0 \\ 3.4$ Case 55 $t_s = 0.0$	$\frac{1}{6}$ . 4484	. 3313 =0.667; 1°	1. 255	1. 089 1. 099	
3. 0 3. 3 Case 51 $t_s = 0.3$	. 4743 . 4781	. 3441 _E =3.333; V	I. 197	1. 096	.4153	$3.0 \\ 3.4$ Case 55 $t_s = 0.0$	. <b>4484</b> i:	. 3313 =0.667; 1°	1. 255	1. 089 1. 099	
3. 0 3. 3 Case 51 t _s =0.3	$\begin{vmatrix} .4743 \\ .4781 \end{vmatrix}$ 1: $333; \frac{t_c}{t_s} = 0.4; t$	. 3441 _E =3.333; V	I. 197	1. 096	.4153	$3.0 \\ 3.4$ Case 55 $t_s = 0.0$	$\frac{1}{6}$ . 4484	. 3313 =0.667; 1°	1. 255	1. 089 1. 099	
$3.0$ $3.3$ Case 51 $t_s = 0.5$ $N_{P_7}$ $0$ $1.0$ $1.4$ $1.8$ $2.2$ $2.6$ $3.0$ $3.2$ Case 52	1: $\frac{t_r}{t_s} = 0.4$ ; $t$ 333; $\frac{t_r}{t_s} = 0.4$ ; $t$ 0. 3620 4143 4408 4553 4666 4759 4836 4902 4932	$\begin{array}{c} .3441 \\ E=3.333; \ V_{\odot} \\ \nu_{\mu\mu\nu} = 0.7067 \\ \hline \\ 0.2605 \\ .2963 \\ .3140 \\ .3227 \\ .3312 \\ .3373 \\ .3424 \\ .3468 \\ .3488 \\ \end{array}$	1. 197  1. 197  1. 197  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200	1. 096 1. 104 1. 104 1. 104 1. 104 1. 104 1. 1000 1. 031 1. 055 1. 074 1. 1090 1. 104 1. 111	$\begin{array}{c} .4153\\ .3947\\ .\\ .\\ .\\ .\\ .\\ .\\ .\\ .\\ .\\ .\\ .\\ .\\ .\\$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} .4484 \\ \vdots \\ = 0.761; \frac{\rho}{\rho_3} \\ 0.3663 \\ .4194 \\ .4433 \\ .4558 \\ .4558 \\ .4558 \\ .4728 \\ .4728 \\ .4791 \\ .4844 \\ .4890 \\ .4901 \\ .6077 \\ \vdots \\ \vdots \end{array}$	$\begin{array}{c} .3313 \\ = 0.667; \ 1 \\ \infty \\ \frac{e\mu_r}{e^{\mu_w}} = 0.5790 \\ 0.2848 \\ .3255 \\ .3438 \\ .3533 \\ .3605 \\ .3663 \\ .3710 \\ .3750 \\ .3785 \\ .3793 \\ .4658 \\ \end{array}$	1. 255 = 25,100 fps; 0. 3663 . 6738 . 8689 . 9925 1. 193 1. 279 1. 357 1. 430 1. 448	1. 089 1. 099 1. 099 5 w = 0.06667; 0. 8285 9470 1. 000 1. 028 1. 049 1. 065 1. 079 1. 091 1. 103 1. 355	$\begin{array}{c} \frac{h_w}{h_E} = 0.100;\\ 0.8324\\ 5.292\\ 4137\\ .3587\\ .3194\\ .2895\\ .2658\\ .2465\\ .2302\\ .2266 \end{array}$
3.0 3.3  Case 51 $t_*=0.5$ 1.0 1.4 1.8 2.2 2.6 3.0 3.2  Case 52 $t_*=0.6$	1: $\frac{4743}{t_s} = 0.4$ ; $t$ 1: $\frac{1}{t_s} = 0.4$ ; $t$ 1: $\frac{0.3620}{4143} = 0.4$ ; $t$ 1: $\frac{4143}{4408} = 0.4$ ; $t$ 1: $\frac{4408}{4536} = 0.4$ ; $t$ 1: $\frac{4759}{4836} = 0.4$ ; $t$ 2: $\frac{4932}{t_s} = 0.2$ ; $t$	$\begin{array}{c} .3441 \\ \scriptstyle E=3.333; \ \ U_{o} \\ \scriptstyle vHv \\ \end{array}$	1. 197  1. 197  1. 197  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200	1. 096 1. 104 1. 104 1. 104 1. 104 1. 104 1. 1000 1. 031 1. 055 1. 074 1. 1090 1. 104 1. 111	$\begin{array}{c} .4153 \\ .3947 \\ \hline \\ .65 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66 \\ .66$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} .4484 \\ \vdots \\ = 0.761; \frac{\rho}{\rho_3} \\ 0.3663 \\ .4194 \\ .4433 \\ .4558 \\ .4558 \\ .4558 \\ .4728 \\ .4728 \\ .4791 \\ .4844 \\ .4890 \\ .4901 \\ .6077 \\ \vdots \\ \vdots \end{array}$	$\begin{array}{c} .3313 \\ = 0.667; \ 1^{\circ}_{\infty} \\ \frac{e^{\mu} e}{e^{\mu}} = 0.5790 \\ 0.2848 \\ .3255 \\ .3438 \\ .3533 \\ .3605 \\ .3663 \\ .3710 \\ .3750 \\ .3785 \\ .3793 \end{array}$	1. 255 = 25,100 fps; 0. 3663 . 6738 . 8689 . 9925 1. 193 1. 279 1. 357 1. 430 1. 448	1. 089 1. 099 1. 099 5 w = 0.06667; 0. 8285 9470 1. 000 1. 028 1. 049 1. 065 1. 079 1. 091 1. 103 1. 355	$\begin{array}{c} \frac{h_w}{h_E} = 0.100;\\ 0.8324\\ 5.292\\ 4137\\ .3587\\ .3194\\ .2895\\ .2658\\ .2465\\ .2302\\ .2266 \end{array}$
3.0 3.3  Case 51 $t_*=0.5$ 1.0 1.4 1.8 2.2 2.6 3.0 3.2  Case 52 $t_*=0.6$	1: $\frac{t_r}{t_s} = 0.4$ ; $t$ 333; $\frac{t_r}{t_s} = 0.4$ ; $t$ 0. 3620 4143 4408 4553 4666 4759 4836 4902 4932	$\begin{array}{c} .3441 \\ \scriptstyle E=3.333; \ \ U_{o} \\ \scriptstyle vHv \\ \end{array}$	1. 197  1. 197  1. 197  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.3620  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200  1. 0.36200	1. 096 1. 104 1. 104 1. 104 1. 104 1. 104 1. 1000 1. 031 1. 055 1. 074 1. 1090 1. 104 1. 111	$\begin{array}{c} .4153\\ .3947\\ .\\ .\\ .\\ .\\ .\\ .\\ .\\ .\\ .\\ .\\ .\\ .\\ .\\$	3.0 3.4  Case 55 $t_s = 0$ . $N_{Pr}$ .  0 .5 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.5 $\infty$ Case 56 $t_s = 0$ .	$\begin{array}{c} .4484 \\ \vdots \\ = 0.761; \frac{\rho}{\rho_3} \\ 0.3663 \\ .4194 \\ .4433 \\ .4558 \\ .4558 \\ .4558 \\ .4728 \\ .4728 \\ .4791 \\ .4844 \\ .4890 \\ .4901 \\ .6077 \\ \vdots \\ \vdots \end{array}$	$\begin{array}{c} .3313 \\ = 0.667; \ 1 \\ 0.2848 \\ .3255 \\ .3438 \\ .3533 \\ .3605 \\ .3663 \\ .3750 \\ .3750 \\ .3785 \\ .3793 \\ .4658 \\ \end{array}$	1. 255 = 25,100 fps; 0. 3663 . 6738 . 8689 . 9925 1. 193 1. 279 1. 357 1. 430 1. 448	1. 089 1. 099 1. 099 5 w = 0.06667; 0. 8285 9470 1. 000 1. 028 1. 049 1. 065 1. 079 1. 091 1. 103 1. 355	$\begin{array}{c} \frac{h_w}{h_E} = 0.100;\\ 0.8324\\ 5.292\\ 4137\\ .3587\\ .3194\\ .2895\\ .2658\\ .2465\\ .2302\\ .2266 \end{array}$

	<del>,</del>	1		1 ,	1
β	g' _w	\$ 'w	f'' _w	$\frac{\zeta'_{w}}{\zeta'_{w}(\beta=1)}$	$\Delta_{tr}^*$
Case 5	7:				
$t_{\bullet}=0.$	.333; $\frac{t_{\bullet}}{t_{\bullet}} = 0.6$ ;	$t_B = 0.667; V_s$	∞=25,100 fp	s; $\zeta_w = 0.040$ ;	$\frac{h_w}{h_B}$ =0.060;
$N_{Pr}$	$f_{1} = 0.711; \frac{f}{\rho}$	$\frac{\partial_e \mu_e}{\psi \mu_w} = 0.5754$			
0	0.3464	0. 2517	0. 3464	0. 8359	1. 192
$\frac{.5}{1.0}$	. 3937	. 2848	. 5900	. 9460 1. 000	. 8149
1.4	. 4299	.3099	. 8510 . 9385	1. 029 1. 052	. 5724
1.8 2.2	. 4477	. 3222	1.016	1.070	. 4685
2.6	. 4544	. 3268	1.086	1. 085 1. 098	. 4324
3. 0 3. 2	. 4627	. 3325	1. 150 1. 180	1. 104	
Case 58	3: 	· <u> </u>			<u>'-</u> -
$t_s=0.5$	333; $\frac{t_{*}}{t_{*}} = 0.4$ ;	$t_E = 0.667; \ V_c$	=25,100 fps	$s; \zeta_w = 0.040;$	$\frac{h_{w}}{h_{E}} = 0.060;$
$N_{Pr,j}$	$f, w = 0.711; \frac{\rho}{\rho}$	$\frac{\epsilon \mu \epsilon}{\epsilon} = 0.8134$			
		υμυ 			
0	0.3515	0. 2527	0.3515	0.8376	1.767
. 5 1. 0	. 3983	. 2849	. 5788	. 9443 1. 000	1. 767 1. 264 1. 032
1.0	.4231	3110	. 8299	1.031	. 9138
1 4	. 4369		. 9148	1.055	. 8266
1 4	. 4477	.3184			5500
1. 4 1. 8 2. 2	. 4477	1 . 3243	. 9902 1. 058	1.075 1.092	1 .7588
1. 4 1. 8 2. 2	. 4477 . 4567 . 4642 . 4707	. 3243 . 3294 . 3337	. 9902 1. 058	1.075 1.092	. 7588 . 7040 . 6588
1 4	. 4477 . 4567 . 4642	. 3243 . 3294	. 9902	1.075	. 7588
1. 4 1. 8 2. 2 2. 6 3. 0 3. 3	. 4477 . 4567 . 4642 . 4707 . 4750	. 3243 . 3294 . 3337	. 9902 1. 058	1.075 1.092	. 7588
1. 4 1. 8 2. 2 2. 6 3. 0 3. 3	. 4477 . 4567 . 4642 . 4707 . 4750	. 3243 . 3294 . 3337 . 3366	. 9902 1. 058 1. 121 1. 165	1. 075 1. 092 1. 106 1. 116	. 7588 . 7040 . 6598
1. 4 1. 8 2. 2 2. 6 3. 0 3. 3 Case 59 $t_s = 0.3$	. 4477 . 4567 . 4642 . 4707 . 4750	3294 3294 3337 3366 , 3366	. 9902 1. 058 1. 121 1. 165	1. 075 1. 092 1. 106 1. 116	. 7588 . 7040 . 6598
1. 4 1. 8 2. 2 2. 6 3. 0 3. 3  Case 59 $t_s = 0.3$	$\begin{array}{c} .4477 \\ .4567 \\ .4662 \\ .4707 \\ .4750 \\ \end{array}$ $\begin{array}{c} .4750 \\ \end{array}$ $\begin{array}{c} .333; \frac{t_e}{t_e} = 0.2; \ = 0.711; \frac{\rho}{\rho}, \end{array}$	$3243$ $3294$ $3337$ $3366$ $t_{B}=0.667; V_{\alpha}$ $t_{\mu}=0.9173$	9902 1.058 1.121 1.165 ==25,100 fps	1. 075 1. 092 1. 106 1. 116	7588 7040 .6588 
1. 4 1. 8 2. 2 2. 6 3. 0 3. 3  Case 59  t _s =0.3	$\begin{array}{c} .4477 \\ .4567 \\ .4662 \\ .4707 \\ .4750 \\ \end{array}$ $333; \frac{t_e}{t_e} = 0.2; \\ . \omega, = 0.711; \frac{\rho}{\rho_t}$	$3243$ $3294$ $3337$ $3306$ $t_B = 0.667$ ; $V_\alpha$ $t_{\mu\nu} = 0.9173$	9902 1.058 1.121 1.165 =25,100 fps	1. 075 1. 092 1. 106 1. 116 1. 116 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1. 126 1.	7588 .7040 .6588 
1. 4 1. 8 2. 2 2. 6 3. 0 3. 3 Case 59 $t_s = 0.3$ $N_{Pr,f}$	$\begin{array}{c} 4477 \\ 4567 \\ 4567 \\ 4642 \\ 4707 \\ 4750 \\ \end{array}$ $\vdots$ $0.333; \frac{t_{\bullet}}{t_{\bullet}} = 0.2; \\ 0.3578 \\ 4037 \\ 4301 \\ \end{array}$	$3243$ $3294$ $3337$ $3306$ $t_{E} = 0.667$ ; $V_{\alpha}$ $t_{\mu} = 0.9173$ $0.2545$ $2854$ $3330$	9902 1.058 1.121 1.165 = 25,100 fps 0.3578 5628 .7062	1.075 1.092 1.106 1.116 1.116 0.8398 9420 1.000	7558 .7040 .6588 
1. 4 1. 8 2. 2 2. 6 3. 0 3. 3  Case 59  t _s =0.3  N _{Fr,f}	$\frac{.4477}{.4567}$ $\frac{.4567}{.4642}$ $\frac{.4707}{.4750}$ $\frac{.4750}{.4750}$ ${.4750}$ ${.4750}$ ${.4750}$ ${.4750}$	$3243$ $3294$ $3337$ $3366$ $t_{E} = 0.667$ ; $V_{\alpha}$ $t_{\mu\nu} = 0.9173$ $0.2545$ $2854$ $3030$ $3132$	9902 1.058 1.121 1.165 = 25,100 fps 0.3578 5628 -7062 -7994	1.075 1.092 1.106 1.116  5 w=0.040;  0.8398 9420 1.000 1.033	7558 .7040 .6588 
1. 4 1. 8 2. 2 2. 6 3. 0 3. 3  Case 59  t _s =0.3  N _{Fr,f}	4477 4567 4642 4707 4750 $333; \frac{t_e}{t_e} = 0.2; $ $w. = 0.711; \frac{\rho}{\rho}; $ 4037 4301 4454 4577 4880	$3243$ $3294$ $3337$ $3366$ $t_B = 0.667$ ; $V_{\alpha}$ $t_{\mu\nu} = 0.9173$ $0.2545$ $2854$ $3030$ $3132$ $3213$ $3281$	9902 1.058 1.121 1.165 	1.075 1.092 1.106 1.116  7; \$\( \sigma = 0.040; \) \\ 0.8398 9420 1.000 1.033 1.060 1.083	7588 7040 6588 - $h_B = 0.060$ ; $h_B = 0.060$ ; - - - - - - - -
1. 4 1. 8 2. 2 2. 6 3. 0 3. 3 Case 59 $t_s = 0.3$ $N_{Pr,f}$	$4477$ $4567$ $4642$ $4707$ $4750$ 2: 333; $\frac{t_s}{t_s} = 0.2$ ; $t_s = 0.711$ ; $\frac{\rho}{\rho}$ ; 4301 $4454$ $4557$	$3243$ $3294$ $3337$ $3366$ $t_S = 0.667$ ; $V_{\alpha}$ $t_{\mu\nu} = 0.9173$ $0.2545$ $2854$ $3030$ $3132$ $323$	0. 3578 - 5628 - 7062 - 7994 - 8806	1.075 1.092 1.106 1.116 1.116  0.8398 9420 1.000 1.033 1.060	7558 .7040 .6588 
1. 4 1. 8 2. 2 2. 6 3. 0 3. 3  Case 59  t _s =0.3  N _{Fr,f} 0 1. 4 1. 8 2. 2 6 3. 0	$\begin{array}{c} .4477\\ .4567\\ .4642\\ .4707\\ .4750\\ \\ \vdots\\ .\omega.=0.711; \frac{\rho}{\rho_1}\\ 0.3578\\ .4037\\ .4301\\ .4454\\ .4577\\ .4680\\ .4687\\ .4680\\ .4845\\ \end{array}$	$3243$ $3294$ $3337$ $3366$ $t_{E}=0.667; V_{\alpha}$ $t_{\mu}=0.9173$	9902 1.058 1.121 1.165 = 25,100 fps = 25,100 fps 5628 .7062 .7994 .8806 .9531 1.019	1.075 1.092 1.106 1.116 1.116 1.116 1.116 1.116 1.116 1.116 1.116 1.000 1.033 1.000 1.083 1.100	7558 .7040 .6588 
1. 4 1. 8 2. 2 2. 6 3. 0 3. 3  Case 59  t _s =0.3  N _{Pr,f} 0 1. 0 1. 4 1. 8 2. 2 2. 6 3. 0  Case 60	$\begin{array}{c} 4477\\ 4567\\ 4567\\ 4642\\ 4707\\ 4750\\ \\ \vdots\\ \omega_{\star}=0.711; \frac{\rho}{\rho_{\star}}\\ 0.3578\\ 4037\\ 4301\\ 4454\\ 4577\\ 4680\\ 4768\\ 4768\\ 4845\\ \end{array}$	$3243$ $3294$ $3337$ $3366$ $t_S = 0.667$ ; $V_{\alpha}$ $t_{\mu} = 0.9173$ $0.2545$ $2854$ $3030$ $3132$ $3281$ $3281$ $3390$	0.3578 -5628 -7694 -8806 -9531 -9531 -9531 -9531 -9531 -9531 -9531 -9531 -9531 -9531 -9531	1.075 1.092 1.106 1.116 1.116  0.8398 9420 1.000 1.033 1.000 1.083 1.102 1.119	7588 .7040 .6588 .7040 .6588 .7040 .6588 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040
1. 4 1. 8 2. 2 2. 6 3. 0 3. 3  Case 59  t _s =0.3  N _{Fr,f} 0 1. 0 1. 4 1. 8 2. 2 2. 6 3. 0  Case 60  t _s =0.3	$\begin{array}{c} 4477\\ 4567\\ 4567\\ 4642\\ 4707\\ 4750\\ \end{array}$	$3243$ $3294$ $3337$ $3366$ $t_E = 0.667$ ; $V_\alpha$ $t_{\mu\nu} = 0.9173$ $0.2545$ $2854$ $3030$ $3132$ $3231$ $3281$ $3339$ $3390$	0.3578 -5628 -7694 -8806 -9531 -9531 -9531 -9531 -9531 -9531 -9531 -9531 -9531 -9531 -9531	1.075 1.092 1.106 1.116 1.116  0.8398 9420 1.000 1.033 1.000 1.083 1.102 1.119	7588 .7040 .6588 .7040 .6588 .7040 .6588 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040
1. 4 1. 8 2. 2 2. 6 3. 0 3. 3  Case 59  t _s =0.3  N _{Fr,f} 0 1. 0 1. 4 1. 8 2. 2 2. 6 3. 0  Case 60  t _s =0.3	$\begin{array}{c} 4477\\ 4567\\ 4567\\ 4642\\ 4707\\ 4750\\ \\ \vdots\\ \omega_{\star}=0.711; \frac{\rho}{\rho_{\star}}\\ 0.3578\\ 4037\\ 4301\\ 4454\\ 4577\\ 4680\\ 4768\\ 4768\\ 4845\\ \end{array}$	$3243$ $3294$ $3337$ $3366$ $t_E = 0.667$ ; $V_\alpha$ $t_{\mu\nu} = 0.9173$ $0.2545$ $2854$ $3030$ $3132$ $3231$ $3281$ $3339$ $3390$	0.3578 -5628 -7694 -8806 -9531 -9531 -9531 -9531 -9531 -9531 -9531 -9531 -9531 -9531 -9531	1.075 1.092 1.106 1.116 1.116  0.8398 9420 1.000 1.033 1.000 1.083 1.102 1.119	7588 .7040 .6588 .7040 .6588 .7040 .6588 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040 .7040
1. 4 1. 8 2. 2 2. 6 3. 0 3. 3  Case 59  t _s =0.3  N _{Pr,f} 0 1. 4 1. 8 2. 2 2. 6 3. 0  Case 600  t _s =0.3	$\begin{array}{c} 4477\\ 4567\\ 4567\\ 4642\\ 4707\\ 4750\\ \end{array}$	$3243$ $3294$ $3337$ $3366$ $t_{E} = 0.667$ ; $V_{\alpha}$ $t_{\mu\nu} = 0.9173$	0. 3578 5628 7092 7094 0. 3578 5628 7062 7994 8806 9531 1. 019 1. 079	1.075 1.092 1.106 1.116  3; \$\zeta_w = 0.040; \\ \)  0.8398 9420 1.000 1.033 1.000 1.083 1.102 1.119	7584 .7640 .6588 .7040 .6588 
1. 4 1. 8 2. 2 2. 6 3. 0 3. 3  Case 59  t _s =0.3  N _{Pr,f} 0 1. 4 1. 8 2. 2 6 3. 0  Case 60 t _s =0.3	$\begin{array}{c} 4477\\ 4567\\ 4642\\ 4707\\ 4750\\ \end{array}$	$3243$ $3294$ $3337$ $3366$ $t_B = 0.667$ ; $V_{\alpha}$ $t_{\mu\nu} = 0.9173$ $0.2545$ $2854$ $3030$ $3132$ $3213$ $3281$ $3390$ $3390$ $0.333$ ; $V_{\infty} = 0.2321$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2545$ $0.2555$ $0.2555$ $0.2555$ $0.2555$ $0.2555$ $0.2555$ $0.2555$ $0.2555$ $0.2555$	9902 1.058 1.121 1.165 =25,100 fps 5628 7062 7994 8806 9531 1.019 1.079	1.075 1.092 1.106 1.116  3; \$\xi_w = 0.040; \\ \)  0.8398 9420 1.000 1.033 1.060 1.083 1.102 1.119	7588 .7040 .6588 .6588 $h_w = 0.060$ ;  3. 423 2. 574 2. 146 1. 920 1. 750 1. 616 1. 507 1. 416 $h_w = 0.0152$ ;
1. 4 1. 8 2. 2 2. 6 3. 0 3. 3  Case 59  t _s =0.3  N _{Fr} , f  0 1. 4 1. 8 2. 2 6 3. 0  Case 60  t _s =0.3  N _{Fr} , f	$\begin{array}{c} 4477\\ 4567\\ 4462\\ 4707\\ 4750\\ \end{array}$	$3243$ $3294$ $3337$ $3366$ $t_S = 0.667$ ; $V_{\alpha}$ $t_{\alpha} = 0.9173$	9902 1.058 1.121 1.165 =25,100 fps 	1.075 1.092 1.106 1.116  3.8398 9420 1.000 1.033 1.060 1.083 1.102 1.119	$\begin{array}{c} .7588 \\ .7598 \\ .6588 \\ \hline \\ .8 \\ .0000; \\ h_B = 0.060; \\ \hline \\ 1.50000; \\ 1.500000; \\ 1.500000000; \\ 1.5000000000000000000000000000000000000$
1. 4 1. 8 2. 2 2. 6 3. 0 3. 3  Case 59  t _s =0.3  N _{Fr} , f  0 1. 4 1. 8 2. 2 6 3. 0  Case 60  t _s =0.3  N _{Fr} , f	$\begin{array}{c} .4477\\ .4567\\ .4567\\ .4642\\ .4707\\ .4750\\ \end{array}$	$3243$ $3294$ $3327$ $3366$ $t_{B} = 0.667$ ; $V_{\alpha}$ $t_{A} = 0.9173$ $t$	9902 1.058 1.121 1.165 =25,100 fps 5628 7062 7994 8806 9531 1.019 1.079 235,600 fps; §	1.075 1.092 1.106 1.116  3.5 w=0.040;  3.5 w=0.040;  3.5 w=0.040;  3.060 1.083 1.060 1.083 1.102 1.119  3.060 1.08405 9500 1.000 1.026 1.046	7588 .7040 .6588 .7040 .6588 
1. 4 1. 8 2. 2 2. 6 3. 0 3. 3  Case 59  t _* =0.3  N _{Pr} , f  0 1. 4 1. 8 2. 2 6 3. 0  Case 60  t _* =0.3  N _{Pr} , f	$\begin{array}{c} .4477\\ .4567\\ .4567\\ .4642\\ .4707\\ .4750\\ \end{array}$	$3243$ $3294$ $3327$ $3366$ $t_{E}=0.667$ ; $V_{\alpha}$ $t_{\mu}=0.9173$	9902 1.058 1.121 1.165 =25,100 fps 5628 7062 7994 8806 9531 1.019 1.079 235,600 fps; §	1.075 1.092 1.106 1.116  3.8398 9420 1.000 1.033 1.060 1.083 1.102 1.119	$\frac{7588}{7040}$ $\frac{6588}{6588}$ $\frac{1}{1000}$
1. 4 1. 8 2. 2 2. 6 3. 0 3. 3  Case 59  t _s =0.3  N _{Fr} , f  0 1. 4 1. 8 2. 2 6 3. 0  Case 60  t _s =0.3	$\begin{array}{c} 4477\\ 4567\\ 4567\\ 4642\\ 4707\\ 4750\\ \\ \end{array}$	$3243$ $3294$ $3337$ $3366$ $t_{E} = 0.667$ ; $V_{\alpha}$ $t_{\mu\nu} = 0.9173$	9902 1. 058 1. 121 1. 165 = 25,100 fps . 5628 . 7062 . 7994 . 8806 . 9531 1. 019 1. 079 . 35,600 fps; § . 35,600 fps; § . 4113 . 5191 . 5864 . 6439 . 6439 . 6439 . 6439	1.075 1.092 1.106 1.116  0.8398 .9420 1.000 1.033 1.060 1.083 1.102 1.119	$\begin{array}{c} .7588 \\ .7040 \\ .6588 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

Conti	nued				ı.
β	g' _w	<i>ڏ</i> ڻ	$f_w^{\prime\prime}$	$\frac{\zeta'_{w}}{\zeta'_{w}(\beta=1)}$	$\Delta_{tr}^{*}$
Case			_		
$t_{\bullet}=0$	$t_{*}.333; \frac{t_{*}}{t_{*}} = 1; t_{*}$	$g=0.333; V_{\infty}$	=35,600 fps;	$\zeta_w = 0.015; \frac{h}{h}$	$\frac{w}{E} = 0.045;$
$N_{Pr}$	$_{\rho}$ , $_{w}$ = 0.693; $\frac{\rho}{\rho}$	$\frac{e^{\mu}e}{w^{\mu}w}$ =0.3405			
0 . 5 1. 0 1. 4 1. 8 2. 2 2. 6 3. 0 3. 3	0. 2878 .3267 .3445 .3538 .3609 .3666 .3713 .3753 .3779	0. 2162 . 2448 . 2578 . 2646 . 2698 . 2739 . 2773 . 2803 . 2821	0. 2878 . 5023 . 6372 . 7219 . 7944 . 8583 . 9159 . 9685 1. 005	0. 8385 . 9495 1. 000 1. 027 1. 047 1. 063 1. 076 1. 087 1. 094	0. 5445 . 3348 .2530 .2138 .1857 . 1642 .1472 . 1333
Case 6		٠.			'
$t_s = 0$ .	333; $\frac{t_s}{t_s} = 1$ ; $t_B$	=0.333; V _{\infty}	=35,600 fps;	; _w =0.03333;	$\frac{h_w}{h_E} = 0.100;$
$N_{P_{I,j}}$	$f_{v} = 0.768; \frac{\rho}{\rho_{v}}$	$\frac{e\mu e}{e\mu u} = 0.4571$			
0 . 5 1. 0 1. 4 1. 8 2. 2 2. 6 3. 0 3. 4	0. 3305 . 3762 . 3970 . 4079 . 4162 . 4220 . 4284 . 4330 . 4371 . 5414	0. 2696 . 3063 . 3228 . 3315 . 3381 . 3433 . 3477 . 3514 . 3545 . 4341	0. 3305 . 5890 . 7526 . 8559 . 9446 1. 023 1. 094 1. 159 1. 219	0. \$352 .9487 1. 000 1. 027 1. 047 1. 064 1. 077 1. 088 1. 096 1. 345	0. 6711 . 4189 . 3214 . 2747 . 2413 . 2159 . 1957 . 1791 . 1686
$N_{P',j}$	333; $\frac{t_e}{t_s} = 0.8$ ; $t_{r,w} = 0.768$ ; $\frac{\rho_e}{\rho_w}$	$\mu_{\sigma} = 0.333; V_{co}$ $\frac{\mu_{\sigma}}{\mu_{w}} = 0.4932$	=35,600 fps	; ; ; u=0.03333	$\frac{h_w}{h_E} = 0.100;$
0 1.0 1.4 1.8 2.2 2.6 3.0 3.1	0, 3342 .3798 .4015 .4130 .4219 .4290 .4349 .4400 .4411	0, 2692 . 3049 . 3216 . 3305 . 3373 . 3428 . 3474 . 3512 . 3521	0. 3342 . 5813 . 7404 . 8413 . 9281 1. 005 1. 074 1. 138 1. 153	0. 8372 . 9479 1. 000 1. 028 1. 049 1. 066 1. 080 1. 092 1. 095	0. 8459 . 5532 . 4340 . 3759 . 3339 . 3018 . 2763 . 2553
Case 64					
$t_{*}=0.3$	333; $\frac{t_s}{t_s} = 0.6$ ; $t$	_E =0.333; Γ _∞	=35,600 fps	$\zeta_w = 0.03333$	$; \frac{h_w}{h_B} = 0.100;$
$N_{Pr,f}$	$_{vr} = 0.768; \frac{\rho_{re}}{\rho_{we}}$	$\frac{\mu_{r}}{\mu_{w}} = 0.5440$			
0 .5 1.0 1.4 1.8 2.2 2.6 3.0 3.3	0. 3385 3838 4064 4187 4283 4360 4425 4481 4518	0. 2693 . 3038 . 3.03 . 3301 . 3373 . 3430 . 3479 . 3520 . 3548	0. 3385 . 5719 . 7256 . 8235 . 9080 . 9830 1. 051 1. 113 1. 157	0. 83£3 . 94£9 1. 000 1. 029 1. 051 1. 069 1. 084 1. 097 1. 106	1. 125 . 7708 . 6173 . 5409 . 4852 . 4422 . 4078 . 3794

Ì

### TABLE III.—TABLES OF SIMILAR SOLUTIONS FOR EQUILIBRIUM DISSOCIATED AIR, F=0 ( $N_{Le}=1$ )—Con. (a) Heat-transfer cases—Continued

					(a) Heat-tra	usier case	es—Contir	ued				
β	g'u	ξ' _w	f'' _w	$ \frac{\zeta_w'}{\zeta_w'(\beta=1)} $	Δ*,		β	g'w	š'u	f'' _w	$\frac{\zeta_w'}{\zeta_w'(\beta=1)}$	$\Delta_{tr}^{+}$
Case 65				<u>'</u>	· <u>'                                    </u>		Case 69	) 9:	·	·	1	<u> </u>
$t_{*}=0.$	$333; \frac{t_s}{t_s} = 0.4;$	$t_B = 0.333; \ V_{_G}$	∞=35,600 fps	s; ζ _w =0.0333	$3; \frac{h_{\omega}}{h_{R}} = 0.100;$		t.=0.	1; $\frac{t_e}{t_e}$ =1.0; $t_f$	s=6.58; V _∞ =	-7,600 fps; ζ	$_{u}=0.6579; \frac{h_{w}}{h_{x}}$	=0.10;
1	r, ω=0.768; ρ				2		i	$\rho_{r,w} = 0.768; \frac{\rho}{\rho}$			""	
0 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.5	0. 3435 . 3880 . 4117 . 4250 . 4365 . 4441 . 4514 . 4576 . 4632 . 4645	0. 2699 . 3031 . 3206 . 3303 . 3380 . 3442 . 3495 . 3541 . 3580 . 3590	0. 3435 . 5594 . 7056 . 7998 . 8813 . 9538 1. 019 1. 080 1. 136 1. 149	0. 8419 . 9455 1. 000 1. 030 1. 054 1. 074 1. 090 1. 105 1. 117 1. 120	1. 652 1. 188 . 9712 . 8005 . 7784 . 7146 . 6631 . 6205 . 5844 . 5762		0 1.0 1.4 1.8 2.2 2.6 3.0 3.1	0. 4934 . 7609 . 8410 . 8797 . 9070 . 9298 . 9476 . 9624 . 9657	0. 09331 . 1544 . 1730 . 1821 . 1888 . 1940 . 1982 . 2018 . 2026	0. 4934 2. 915 4. 326 5. 218 5. 988 6. 673 7. 297 7. 871 8. 009	0. 5393 . 8927 I. 000 1. 052 1. 091 I. 121 I. 146 I. 166 1. 171	13. 21 8. 065 7. 014 6. 567 6. 265 6. 045 5. 876 5. 741
Case 60	3:	,		'			Case 70					
$t_s = 0.3$	333; $\frac{t_e}{t_s} = 0.2$ ;	t = 0.333; T	=35,600 fps	; ζ _w ≈ 0.03333	$3; \frac{h_w}{h_B} = 0.100;$		$t_s=0$ .	1; $\frac{t_s}{t_s} = 1.0$ ; $t_E$	r=1.73; V _∞ =	15,500 fps; ζ	$w = 0.0262$ ; $\frac{h_w}{h_R}$	=0.0152;
1	$r_{vw} = 0.768; \frac{\rho}{\rho_0}$				<i>n</i> g		N _{Pr,j}	$r_{,w} = 0.709; \frac{\rho}{\rho}$	$\frac{\partial_{\sigma}\mu_{\sigma}}{\omega\mu_{w}} = 0.6199$			
0 1. 0 1. 4 1. 8 2. 2 2. 6 3. 0 3. 4 3. 5	0, 3496 , 3922 , 4172 , 4317 , 4435 , 4534 , 4618 , 4693 , 4758 , 4774	0. 2714 . 3025 . 3205 . 3310 . 3394 . 3464 . 3525 . 3578 . 3624 . 3635	0. 3496 . 5395 . 6739 . 7618 . 8386 . 9072 . 9695 1. 027 1. 080 1. 093	0.8468 .9439 1.900 1.033 1.059 1.081 1.100 1.116 1.131 1.134	3. 093 2. 352 1. 970 1. 767 1. 613 1. 491 1. 392 1. 309 1. 239 1. 222		0 5 1, 0 1, 4 1, 8 2, 2 2, 6 3, 0 3, 4 3, 5	0, 3293 , 4171 , 4497 , 4660 , 4779 , 4973 , 4949 , 5013 , 5068 , 5080	0. 2410 .3054 .3293 .3412 .3500 .3568 .3624 .3671 .3710 .3719	0. 3293 8577 1. 162 1. 348 1. 504 1. 640 1. 761 1. 871 1. 971 1. 995	0. 7318 . 9273 1. 000 1. 036 1. 063 1. 084 1. 100 1. 114 1. 127 1. 129	2. 229 1. 463 1. 232 1. 128 1. 056 1. 003 9616 9282
Case 67							Case 71	:				
t,=0.1	$1; \frac{t_e}{\tilde{t}_s} = 1.0; t_R$	$=6.58; V_{\infty} =$	7,600 fps; $\zeta_w$	$=0.10; \frac{h_w}{h_E}=0$	.0152;				κ=1.73; Τ _∞ =	= 15,500 fps;	$r_w = 0.0262; \frac{h_v}{h_v}$	=0.0152;
Npres	$\rho_{vw} = 0.709; \frac{\rho_{vw}}{\rho_{w}}$	$\epsilon^{\mu}_{r\mu w} = 1.0$						$r_{xx} = 0.709; \frac{\rho}{\rho}$			",	•
0 .5 1.0 1.4 1.8 2.2 2.6 3.0 3.3	0. 4070 . 5559 . 6060 . 6304 . 6482 . 6621 . 6733 . 6826 . 6887 . 8679	0. 2732 . 3742 . 4082 . 4247 . 4368 . 4462 . 4533 . 4601 . 4642 . 5817	0, 4070 1, 412 1, 982 2, 329 2, 623 2, 878 3, 107 3, 315 3, 460	0. 6693 . 9167 1. 000 1. 041 1. 070 1. 093 1. 112 1. 127 1. 137 1. 425	4, 868 3, 133 2, 684 2, 488 2, 354 2, 256 2, 180 2, 119		0 1. 0 1. 4 1. 8 2. 2 2. 6 3. 0 3. 1	0. 3317 . 4223 . 4576 . 4755 . 4889 . 4994 . 5081 . 5153 . 5170	0. 2417 .3074 .3330 .3459 .3554 .3630 .3692 .3744 .3755	0, 3317 .8606 1, 173 1, 364 1, 526 1, 667 1, 793 1, 907 1, 934	0. 7259 . 9234 1. 000 1. 039 1. 068 1. 090 1. 109 1. 124 1. 128	3. 019 2. 001 1. 676 1. 526 1. 422 1. 343 1. 282 1. 232
Case 68							Case 72	:				
$t_{*}=0.1$	$1; \frac{t_s}{t_s} = 1.0; t_B$	=6.58; V _∞ =	7,600 (ps; ζ _w :	$=0.30; \frac{hw}{h\kappa}=0$	.0456;		t,=0.1	1; $\frac{t_c}{t_s} = 0.50$ ; $t_s$	κ=1.73; 1° _∞ =	=15.500 fps; {	$u = 0.0262; \frac{h_u}{h_z}$	=0,0152;
N _{Pr} ./.	$u = 0.693; \frac{\rho_{e}}{\rho_{w}}$	$\frac{\mu_e}{\mu_w} = 1.475$					N _{Pr.f}	$p_{w}=0.709; \frac{\rho}{\rho}$	$\frac{e\mu_e}{e\mu_w} = 0.7924$			
0 .5 1.0 1.4 1.8 2.2 2.6 3.0 3.3 $\infty$	0. 4599 .6659 .7313 .7632 .7865 .8046 .8192 .8315 .8394	0. 2198 . 3222 . 3548 . 3707 . 3823 . 3914 . 3987 . 4048 . 4088 . 5279	0, 4599 2, 102 3, 057 3, 655 4, 167 4, 622 5, 034 5, 412 5, 677	0. 6194 . 9080 1. 000 1. 045 1. 078 1. 103 1. 124 1. 141 1. 152 1. 488	8. 345 5. 264 4. 554 4. 2548 4. 040 3. 887 3. 770 3. 676		0 .5 1.0 1.4 1.8 2.2 2.6 3.0 3.3	0. 3346 . 4301 . 4692 . 4895 . 5049 . 5171 . 5273 . 5359 . 5415	0. 2425 .3111 .3388 .3531 .3639 .3725 .3796 .3856 .3895	0. 3346 . 8763 1. 204 1. 407 1. 579 1. 730 1. 864 1. 986 2. 071	0. 7158 . 9182 1. 000 1. 042 1. 074 1. 099 1. 120 1. 138 1. 150	4. 769 3. 536 2. 940 2. 659 2. 460 2. 309 2. 189 2. 092

β	g' _w	٢',	$f_{w}^{"}$	$\frac{\zeta'_{w}}{\zeta'_{w}(\beta=1)}$	Δ*,	β	g' _w	\$ <u>'</u>	$f_{w}^{\prime\prime}$	$\frac{\zeta_w'}{\zeta_w'(\beta=1)}$	$\Delta_{tr}^*$
Case 7	3:					Case 7	7:		•		'
		$t_{R}=1.73;\ V_{o}$	$_{\infty} = 15,000 \text{ fps}$	; $\zeta_w = 0.0262$ ;	$\frac{h_w}{h_R} = 0.0152;$	l l		$y = 1.0; V_{\infty} =$	20,400 fps; ζ	$_{w}=0.10; \frac{h_{w}}{h_{R}}=$	0.10;
$N_{Pr}$	$f_{w}=0.709; \frac{f}{\rho}$	$\frac{\partial \epsilon \mu \epsilon}{\omega \mu \omega} = 1.0$				$N_{Pr}$	$f_{*w} = 0.768; \frac{f}{\rho}$	$\frac{\partial \epsilon \mu \epsilon}{\omega \mu \omega} = 1.090$			
0 . 5 1. 0 1. 4 1. 8 2. 2 2. 6 3. 0 3. 3	0. 3377	0. 2435 . 3232 . 3556 . 3727 . 3858 . 3964 . 4053 . 4183 . 4179	0. 3377 . 9709 1. 353 1. 591 1. 794 1. 971 2. 129 2. 274 2. 374	0. 6848 . 9090 1. 000 1. 048 1. 085 1. 115 1. 140 1. 161 1. 175	11. 74 7. 567 6. 154 5. 481 5. 001 4. 636 4. 349 4. 114	0 1. 0 1. 4 1. 8 2. 2 2. 6 3. 0	0. 4073 . 5231 . 5675 . 5900 . 6068 . 6200 . 6309 . 6400	0. 2908 . 3736 . 4052 . 4211 . 4330 . 4424 . 4501 . 4565	0. 4073 1. 149 1. 597 1. 878 2. 119 2. 332 2. 525 2. 701	0. 7177 . 9220 1. 000 1. 039 1. 069 1. 092 1. 111 1. 127	3. 944 2. 641 2. 238 2. 054 1. 925 1. 830 1. 754 1. 694
Case 7					1	Case 78				h	
$t_s = 0$ .	$1; \frac{t_e}{t_s} = 1.0; t_B$	$=1.0; V_{\infty}=$	20,400 fps; ζ	$=0.0152; \frac{h_w}{h_B}$	=0.0152;	$t_z=0.$	1; $\frac{t}{t_s} = 0.6$ ; $t_E$	$=1.0; V_{\infty}=$	20,400 fps; ζ	$w = 0.10; \frac{h_w}{h_R} = 0$	).10;
$N_{Pr,j}$	$f, \omega = 0.709; \frac{\rho}{\rho}$	$\frac{\epsilon \mu_{\epsilon}}{\omega \mu_{\omega}} = 0.5122$				$N_{Pr,j}$	$r_{,w} = 0.768; \frac{\rho}{\rho}$	$\frac{\epsilon \mu}{\omega \mu} = 1.206$			
0 .5 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.5	0. 3012 .3780 .4070 .4215 .4323 .4407 .4475 .4533 .4582 .4593 .5688	0. 2221 2788 3003 3110 3189 3251 3301 3343 3379 3387 4173	0. 3012 . 7588 1. 024 1. 186 1. 322 1. 441 1. 547 1. 643 1. 731 1. 752	0. 7397 . 9286 1. 000 1. 036 1. 062 1. 082 1. 099 1. 113 1. 125 1. 128	1. 876 1. 233 1. 035 9453 . 8833 . 8371 . 8012 . 7722 . 7483	0 1. 0 1. 4 1. 8 2. 2 2. 6 3. 0 3. 4	0. 4096 . 5270 . 5743 . 5987 . 6171 . 6318 . 6439 . 6541 . 6630	0. 2913 .3744 .4075 .4246 .4374 .4476 .4559 .4630 .4691	0. 4096 1. 139 1. 589 1. 873 2. 117 2. 334 2. 529 2. 708 2. 874	0. 7149 . 9187 1. 000 1. 042 1. 073 1. 098 1. 119 1. 136 1. 151	5. 211 3. 539 2. 987 2. 729 2. 548 2. 411 2. 303 2. 215
Case 75	: :		-!	!		Case 79		_10: 1/ _2	0.400 (200 5	$h_{x}=0.10; \frac{h_{w}}{h_{x}}=0$	10.
$t_{\bullet}=0.7$	1; $\frac{t}{t}$ = 1.0; $t_B$	=1.0; V _∞ =2	20,400 fps; ζw	$=0.05; \frac{h_w}{h_R}=0$	),05;	<i>t</i> _s =0.	$t, \frac{-}{t}$	$=1.0; V_{\infty}=2$	0,400 ips; ( e	$h_{E} = 0.10; \frac{1}{h_{E}} = 0$	.10;
3.7	-0 600· p					$N_{Pr,f}$	$\rho_{w} = 0.768; \frac{\rho_{w}}{\rho_{w}}$	$\frac{e^{\mu}e}{\mu_{u}}=1.392$			
IN Prof	$\rho_u$	$\frac{e^{\mu}e}{\mu_{w}} = 0.7833$				1					
0 .5 1.0 1.4 1.8 2.2 2.6 3.0 3.4	0. 3649 . 4626 . 4990 . 5172 . 5307 . 5412 . 5498 . 5571 . 5632	0. 2537 .3218 .3472 .3599 .3693 .3766 .3826 .3876 .3919	0. 3649 . 9785 1. 339 1. 563 1. 752 1. 919 2. 068 2. 204 2. 330	0. 7306 . 9268 1. 000 1. 037 1. 064 1. 1084 1. 102 1. 116 1. 129	2. 540 1. 676 1. 416 1. 299 1. 218 1. 157 1. 110 1. 073	0 . 5 1. 0 1. 4 1. 8 2. 2 2. 6 3. 0 3. 4	0. 4123 .5324 .5835 .6106 .6313 .6480 .6620 .6738 .6842	0. 2920 .3760 .4113 .4298 .4440 .4553 .4648 .4728 .4797	0. 4123 1. 134 1. 590 1. 882 2. 133 2. 356 2. 558 2. 743 2. 914	0. 7098 .9143 1. 000 1. 045 1. 079 1. 107 1. 130 1. 149 1. 166	7. 815 5. 364 4. 507 4. 097 3. 803 3. 579 3. 402 3. 257
0 .5 1.0 1.4 1.8 2.2 2.6 3.0 3.4	0. 3649 . 4626 . 4990 . 5172 . 5307 . 5412 . 5498 . 5571 . 5632	0. 2537 . 3218 . 3472 . 3599 . 3693 . 3766 . 3826 . 3876 . 3919	. 9785 1. 339 1. 563 1. 752 1. 919 2. 068 2. 204 2. 330	. 9268 1, 000 1, 037 1, 064 1, 084 1, 102 1, 116 1, 129	1. 676 1. 416 1. 299 1. 218 1. 157 1. 110 1. 073	0 1.0 1.4 1.8 2.2 2.6 3.0	. 5324 . 5835 . 6106 . 6313 . 6480 . 6620 . 6738 . 6842	. 3760 . 4113 . 4298 . 4440 . 4553 . 4648 . 4728	1, 134 1, 590 1, 882 2, 133 2, 356 2, 558 2, 743	. 9143 1. 000 1. 045 1. 079 1. 107 1. 130 1. 149	5, 364 4, 507 4, 097 3, 803 3, 579 3, 402
0 .5 1.0 1.4 1.8 2.2 2.6 3.0 3.4	0. 3649 . 4626 . 4990 . 5172 . 5307 . 5412 . 5498 . 5571 . 5632	0. 2537 . 3218 . 3472 . 3599 . 3693 . 3766 . 3826 . 3876	. 9785 1. 339 1. 563 1. 752 1. 919 2. 068 2. 204 2. 330	. 9268 1, 000 1, 037 1, 064 1, 084 1, 102 1, 116 1, 129	1. 676 1. 416 1. 299 1. 218 1. 157 1. 110 1. 073	0 5 1. 0 1. 4 1. 8 2. 2 2 2. 6 3. 0 3. 4	. 5324 . 5835 . 6106 . 6313 . 6480 . 6620 . 6738 . 6842	. 3760 . 4113 . 4298 . 4440 . 4553 . 4648 . 4728 . 4797	1. 134 1. 590 1. 882 2. 133 2. 356 2. 558 2. 743 2. 914	. 9143 1. 000 1. 045 1. 079 1. 107 1. 130 1. 149	5. 364 4. 507 4. 097 3. 803 3. 579 3. 402 3. 257
0 5 1. 0 1. 4 1. 8 2. 2 2. 6 3. 0 3. 4 Case 76 t _s =0.1	0. 3649 . 4626 . 4990 . 5172 . 5307 . 5412 . 5498 . 5571 . 5632	0. 2537 .3218 .3472 .3599 .3693 .3766 .3826 .3876 .3919	. 9785 1. 339 1. 563 1. 752 1. 919 2. 068 2. 204 2. 330	. 9268 1, 000 1, 037 1, 064 1, 084 1, 102 1, 116 1, 129	1. 676 1. 416 1. 299 1. 218 1. 157 1. 110 1. 073	0 .5 1.0 1.4 1.8 2.2 2.6 3.0 3.4 Case 80 t _s =0.1	. 5324 . 5835 . 6106 . 6313 . 6480 . 6620 . 6738 . 6842	3760 4113 4298 4440 4553 4648 4728 4797	1. 134 1. 590 1. 882 2. 133 2. 356 2. 558 2. 743 2. 914	. 9143 1. 000 1. 045 1. 079 1. 107 1. 130 1. 149 1. 166	5. 364 4. 507 4. 097 3. 803 3. 579 3. 402 3. 257
0 5 1. 0 1. 4 1. 8 2. 2 2. 6 3. 0 3. 4 Case 76 t _s =0.1	0. $3649$ . $4626$ . $4990$ . $5172$ . $5307$ . $5412$ . $5498$ . $5571$ . $5632$ : :; $\frac{t_e}{t_s} = 1.0$ ; $t_B = 1.0$	0. 2537 .3218 .3472 .3599 .3693 .3766 .3826 .3876 .3919	. 9785 1. 339 1. 563 1. 752 1. 919 2. 068 2. 204 2. 330	. 9268 1, 000 1, 037 1, 064 1, 084 1, 102 1, 116 1, 129	1. 676 1. 416 1. 299 1. 218 1. 157 1. 110 1. 073	0 .5 1.0 1.4 1.8 2.2 2.6 3.0 3.4 Case 80 t _s =0.1	. 5324 . 5835 . 6106 . 6313 . 6480 . 6620 . 6738 . 6842	3760 4113 4298 4440 4553 4648 4728 4797	1. 134 1. 590 1. 882 2. 133 2. 356 2. 558 2. 743 2. 914	. 9143 1. 000 1. 045 1. 079 1. 107 1. 130 1. 149 1. 166	5. 364 4. 507 4. 097 3. 803 3. 579 3. 402 3. 257

β	g' _w	\$'_	$f_{w}^{\prime\prime}$	$\frac{\zeta_w'}{\zeta_w'(\beta=1)}$	Δ*,,
Case 7					
$t_s = 0$	$11; \frac{t_s}{t_s} = 0.8; t$	$E=1.0; V_{\infty}=$	20,400 fps; ζ	$_{w}=0.10; \frac{h_{w}}{h_{E}}=$	0.10;
$N_{Pr}$	,,,,,=0.768;	$\frac{\rho_{\epsilon}\mu_{\epsilon}}{\sigma_{\kappa}\mu_{\omega}} = 1.090$			
0 _	0. 4073	0. 2908	0. 4073	0. 7177	3, 944
. 5 1. 0	. 5231	. 3736	1. 149 1. 597	. 9220 1. 000 1. 039	2. 641 2. 238 2. 054
1. 4 1. 8	. 5900	. 4211		1.039	2. 054
2, 2	. 6200	. 4424	2. 119	1, 092	1. 925 1. 830
2. 6 3. 0	. 6309 . 6400	. 4501 . 4565	2. 119 2. 332 2. 525 2. 701	1. 069 1. 092 1. 111 1. 127	1. 830 1. 754 1. 694
Case 7	0.	1		I	1
		g=1.0; V _∞ =	20.400 fps: と。	$h_{w} = 0.10$ : $\frac{h_{w}}{h_{w}} = 0.10$	0.10:
			,1,, 3 6	, h _E	,
$N_{Pr}$	$f, w = 0.768; \frac{f}{\rho}$	$\frac{\sigma_{e}\mu_{e}}{\sigma_{\mu}\mu_{w}} = 1.206$			
0	0. 4096	0 2913	0, 4096	0. 7149	5 211
. 5	. 5270	0. 2913 . 3744	1. 139	. 9187	5. 211 3. 539 2. 987
1.0	. 5743	. 4075 . 4246	1. 589 1. 873	1,000 1,042	2. 987
1.8	. 6171	4374	2. 117 2. 334	1.073	2. 729 2. 548
2 0		4.450	0.004		
2. 2	. 6318	. 4476	2. 334	1.098	2. 411
2. 6 3. 0	. 6439	. 4559	2. 529	1. 098 1. 119 1. 136	2. 411 2. 303 2. 215
2. 6 3. 0 3. 4	. 6439 . 6541 . 6630	. 4476 . 4559 . 4630 . 4691	2. 334 2. 529 2. 708 2. 874	1. 098 1. 119 1. 136 1. 151	2. 548 2. 411 2. 303 2. 215
o. 4	. 6439 . 6541 . 6630	. 4559	2. 529	1. 098 1. 119 1. 136 1. 151	2. 411 2. 303 2, 215
asc 79	. 6439 . 6541 . 6630	. 4559 . 4630 . 4691	2. 529 2. 708 2. 874	I. 119 1. 136 1. 151	
asc 79	. 6439 . 6541 . 6630	. 4559	2. 529 2. 708 2. 874	I. 119 1. 136 1. 151	
ase 79	. 6439 . 6541 . 6630	$\begin{array}{c} .4559 \\ .4630 \\ .4691 \\ - \end{array}$	2. 529 2. 708 2. 874	I. 119 1. 136 1. 151	
N _{Pr.,}	$\begin{array}{c c} . 6439 \\ . 6541 \\ . 6630 \\ \hline \\ 0: \\ 1; \frac{t_e}{t_s} = 0.4; t_B \end{array}$	$\begin{pmatrix} .4559 \\ .4630 \\ .4691 \end{pmatrix}$ =1.0; $V_{\infty}$ =2 $\frac{e\mu_e}{w\mu_w}$ =1.392	2. 529 2. 708 2. 874 20,400 fps; \$ #	$\begin{bmatrix} 1.19 \\ 1.136 \\ 1.151 \end{bmatrix}$ $= 0.10; \frac{h_w}{h_E} = 0$	.10;
N _{Pr,j}	$\begin{array}{c} .6439 \\ .6541 \\ .6630 \\ \end{array}$ 0: $1; \frac{t}{t}, = 0.4; t_B$ $v,_w = 0.768; \frac{\rho}{\rho}$ 0.4123	$\begin{array}{c c} 4559 \\ 4630 \\ 4691 \\ \end{array}$ $=1.0; \ V_{\infty}=2$ $\begin{array}{c c} v_{\mu e} = 1.392 \\ \hline 0.2920 \\ 3760 \\ \end{array}$	2. 529 2. 708 2. 874 20,400 fps; \$ #	$\begin{bmatrix} 1.19 \\ 1.136 \\ 1.151 \end{bmatrix}$ $= 0.10; \frac{h_w}{h_E} = 0$	.10;
ase 79 $t_s = 0.$ $N_{Pr,j}$	6439 .6541 .6630 1; $\frac{t}{t}$ = 0.4; $t_B$ $t_{,w}$ = 0.768; $\frac{\rho}{\rho}$ 0.4123 .5324 .5835	$\begin{array}{c c} 4559\\ 4630\\ 4691\\ \end{array}$ $=1.0;\ V_{\infty}=2$ $\begin{array}{c c} \mu \epsilon\\ \nu \mu \epsilon\\ \pi \mu \kappa\end{array}=1.392$ $\begin{array}{c c} 0.2920\\ 3760\\ 4113\\ \end{array}$	2. 529 2. 708 2. 874 20,400 fps; \$\( \sigma \)	$\begin{vmatrix} 1.199 \\ 1.136 \\ 1.151 \end{vmatrix}$ $= 0.10; \frac{h_w}{h_E} = 0$ $\begin{vmatrix} 0.7098 \\ .9143 \\ 1.000 \end{vmatrix}$	7. 815 5. 364 4. 507
ase 79 $t_s = 0.$ $N_{Pr,j}$	6439 .6541 .6630 1; $\frac{t_e}{t_r}$ =0.4; $t_B$ $t_w$ =0.768; $\frac{\rho}{\rho}$ 0.4123 .5324 .5835 .6106 .633	$\begin{array}{c c} .4559\\ .4630\\ .4691\\ \hline \\ .=1.0; \ V_{\infty}=2\\ \hline \\ v_{\mu\kappa}=1.392\\ \hline \\ 0.2920\\ .3760\\ .4113\\ .4298\\ .4440\\ \end{array}$	2. 529 2. 708 2. 874 20,400 fps; \$\( \sigma \)	$ \begin{vmatrix} 1.19 \\ 1.136 \\ 1.151 \end{vmatrix} $ $= 0.10; \frac{h_w}{h_E} = 0 $ $\begin{vmatrix} 0.7098 \\ .9143 \\ 1.000 \\ 1.045 \\ 1.079 \end{vmatrix} $	7. 815 5. 364 4. 507 4. 097 3. 803
ase 79 $t_s = 0.$ $N_{Pr,j}$	6439 .6541 .6630 1; $\frac{t_e}{t_s}$ = 0.4; $t_B$ = 0.768; $\frac{\rho}{\rho}$ 0.4123 .5324 .5324 .5335 .6106 .6313 .6480	$\begin{array}{c} 4559 \\ 4630 \\ 4691 \\ \end{array}$ $=1.0; \ V_{\infty}=2$ $\begin{array}{c} t \mu_e \\ v \mu_w \\ \end{array} = 1.392$ $\begin{array}{c} 0.2920 \\ 3700 \\ 4113 \\ 4298 \\ 4440 \\ 4553 \\ \end{array}$	2. 529 2. 708 2. 874 20,400 fps; \$\( \sigma \)	$ \begin{vmatrix} 1. & 1.19 \\ 1. & 136 \\ 1. & 151 \end{vmatrix} $ $= 0.10; \frac{h_w}{h_E} = 0$ $\begin{vmatrix} 0.7098 \\ .9143 \\ 1.000 \\ 1.045 \\ 1.079 \\ 1.107 \end{vmatrix}$	7. 815 5. 364 4. 507 4. 097 3. 803 3. 579
asc 79  t _s =0.  N _{Pr,j}	6439 .6541 .6630 1; $\frac{t}{t}$ = 0.4; $t_B$ = 0.768; $\frac{\rho}{\rho}$ 0.4123 .5824 .5835 .6106 .6313 .6480 .6620 .6738	$\begin{array}{c} .4559 \\ .4630 \\ .4630 \\ .4691 \\ \end{array}$ $=1.0; V_{\infty}=2$ $\begin{array}{c} \frac{\mu_e}{\kappa_{\mu_e}} = 1.392 \\ 0.2920 \\ .3760 \\ .4113 \\ .4298 \\ .4440 \\ .4553 \\ .4648 \\ .4728 \\ \end{array}$	2. 529 2. 708 2. 874 20,400 fps; \$\( \sigma \)	$ \begin{vmatrix} 1. & 1.19 \\ 1. & 136 \\ 1. & 151 \end{vmatrix} $ $= 0.10; \frac{h_w}{h_E} = 0$ $\begin{vmatrix} 0.7098 \\ .9143 \\ 1.000 \\ 1.045 \\ 1.079 \\ 1.107 \end{vmatrix}$	7. 815 5. 364 4. 507 3. 803 3. 579 3. 402
ase 79 $t_s = 0.$ $N_{Pr,j}$	6439 .6541 .6630 1; $\frac{t_e}{t_s}$ = 0.4; $t_B$ = 0.768; $\frac{\rho}{\rho}$ 0.4123 .5324 .5324 .5335 .6106 .6313 .6480	$\begin{array}{c} 4559 \\ 4630 \\ 4691 \\ \end{array}$ $=1.0; \ V_{\infty}=2$ $\begin{array}{c} t \mu_e \\ v \mu_w \\ \end{array} = 1.392$ $\begin{array}{c} 0.2920 \\ 3700 \\ 4113 \\ 4298 \\ 4440 \\ 4553 \\ \end{array}$	2. 529 2. 708 2. 874 20,400 fps; \$\( \sigma \)	$ \begin{vmatrix} 1.19 \\ 1.136 \\ 1.151 \end{vmatrix} $ $= 0.10; \frac{h_w}{h_E} = 0 $ $\begin{vmatrix} 0.7098 \\ .9143 \\ 1.000 \\ 1.045 \\ 1.079 \end{vmatrix} $	7. 815 5. 364 4. 507 4. 097 3. 803 3. 579
NPr.J	6439 .6541 .6630 1; $\frac{t}{t_s} = 0.4$ ; $t_B$ = 0.768; $\frac{\rho}{\rho}$ 0.4123 .5324 .5324 .5335 .6106 .6313 .6480 .6620 .6738 .6842	$\begin{array}{c} .4559 \\ .4630 \\ .4630 \\ .4691 \\ \end{array}$ $=1.0; V_{\infty}=2$ $\begin{array}{c} \frac{\mu_e}{\kappa_{\mu_e}} = 1.392 \\ 0.2920 \\ .3760 \\ .4113 \\ .4298 \\ .4440 \\ .4553 \\ .4648 \\ .4728 \\ \end{array}$	2. 529 2. 708 2. 874 20,400 fps; \$\( \sigma \)	$ \begin{vmatrix} 1. & 1.19 \\ 1. & 136 \\ 1. & 151 \end{vmatrix} $ $= 0.10; \frac{h_w}{h_E} = 0$ $\begin{vmatrix} 0.7098 \\ .9143 \\ 1.000 \\ 1.045 \\ 1.079 \\ 1.107 \end{vmatrix}$	7. 815 5. 364 4. 507 3. 803 3. 579 3. 402
ase $76$ ase $76$ $t_s$ =0. $N_{Pr,J}$	6439 .6541 .6630 1; $\frac{t}{t_*} = 0.4$ ; $t_B$ 1; $\frac{t}{t_*} = 0.4$ ; $t_B$ 0.4123 .5324 .5324 .5335 .6106 .6313 .6480 .6620 .6738 .6842	$\begin{array}{c} .4559 \\ .4630 \\ .4630 \\ .4691 \\ \end{array}$ $=1.0; V_{\infty}=2$ $\begin{array}{c} \frac{\mu_e}{\kappa_{\mu_e}} = 1.392 \\ 0.2920 \\ .3760 \\ .4113 \\ .4298 \\ .4440 \\ .4553 \\ .4648 \\ .4728 \\ \end{array}$	2. 529 2. 708 2. 874 20,400 fps; \$\( \sigma \) 0. 4123 1. 134 1. 580 2. 133 2. 356 2. 558 2. 743 2. 914	1. 119 1. 136 1. 151  = 0.10; $\frac{h_w}{h_E}$ = 0  0. 7098 9143 1. 000 1. 045 1. 079 1. 130 1. 149 1. 166	7. 815 5. 364 4. 507 3. 803 3. 579 3. 402 3. 257
asc 78 $t_r = 0$ .  NPr., $t_r = 0$ .  . 5 0 4	6439 .6541 .6630 1; $\frac{t_e}{t_e} = 0.4$ ; $t_B$ $w = 0.768$ ; $\frac{\rho}{\rho}$ 0.4123 .5324 .5324 .5335 .6106 .6313 .6480 .6620 .6738 .6842	$\begin{array}{c c} .4559 \\ .4630 \\ .4691 \\ \hline \\ .4691 \\ \hline \\ .210; V_{\infty} = 2 \\ \hline \\ .2200 \\ .3760 \\ .4113 \\ .4298 \\ .4440 \\ .4553 \\ .4648 \\ .4797 \\ \hline \\ .2200 \\ .4100 \\ .4553 \\ .4648 \\ .4797 \\ \hline \\ .4797 \\ .4797 \\ \hline \\ .4797 \\$	2. 529 2. 708 2. 874 20,400 fps; \$\( \sigma \) 0. 4123 1. 134 1. 580 2. 133 2. 356 2. 558 2. 743 2. 914	1. 119 1. 136 1. 151  = 0.10; $\frac{h_w}{h_E}$ = 0  0. 7098 9143 1. 000 1. 045 1. 079 1. 130 1. 149 1. 166	7. 815 5. 364 4. 507 3. 803 3. 579 3. 402 3. 257
asc 78 $t_r = 0$ .  NPr., $t_r = 0$ .  . 5 0 4	6439 .6541 .6630 1; $\frac{t}{t_*} = 0.4$ ; $t_B$ 1; $\frac{t}{t_*} = 0.4$ ; $t_B$ 0.4123 .5324 .5324 .5335 .6106 .6313 .6480 .6620 .6738 .6842	$\begin{array}{c c} .4559 \\ .4630 \\ .4691 \\ \hline \\ .4691 \\ \hline \\ .210; V_{\infty} = 2 \\ \hline \\ .2200 \\ .3760 \\ .4113 \\ .4298 \\ .4440 \\ .4553 \\ .4648 \\ .4797 \\ \hline \\ .2200 \\ .4100 \\ .4553 \\ .4648 \\ .4797 \\ \hline \\ .4797 \\ .4797 \\ \hline \\ .4797 \\$	2. 529 2. 708 2. 874 20,400 fps; \$\( \sigma \) 0. 4123 1. 134 1. 580 2. 133 2. 356 2. 558 2. 743 2. 914	1. 119 1. 136 1. 151  = 0.10; $\frac{h_w}{h_E}$ = 0  0. 7098 9143 1. 000 1. 045 1. 079 1. 130 1. 149 1. 166	7. 815 5. 364 4. 507 3. 803 3. 579 3. 402 3. 257
$N_{Pr,t}$ (1) (1) (2) (3) (4) (4) (5) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	6439 .6541 .6630 1; $\frac{t_e}{t_s} = 0.4$ ; $t_B$ $w = 0.768$ ; $\frac{\rho}{\rho}$ 0.4123 .5324 .5324 .5325 .6106 .6313 .6480 .6620 .6738 .6842 :; $\frac{t_e}{t_s} = 0.2$ ; $t_B$	$\begin{array}{c} .4559 \\ .4630 \\ .4630 \\ .4691 \\ \end{array}$ $\begin{array}{c} .4630 \\ .4691 \\ \end{array}$ $\begin{array}{c} .4691 \\ \end{array}$ $\begin{array}{c} .264e \\ .2920 \\ .3760 \\ .4113 \\ .4298 \\ .4440 \\ .4553 \\ .4648 \\ .4728 \\ .4797 \\ \end{array}$ $\begin{array}{c} .4648 \\ .4728 \\ .4797 \\ \end{array}$	2. 529 2. 708 2. 874 20,400 fps; \$\( \sigma \) 0. 4123 1. 134 1. 590 1. 882 2. 133 2. 356 2. 743 2. 914	1. 119 1. 136 1. 151  =0.10; $\frac{h_w}{h_E}$ =0  0. 7098 9143 1. 000 1. 045 1. 079 1. 107 1. 130 1. 149 1. 166	7. 815 5. 364 4. 507 3. 803 3. 579 3. 402 3. 257
$N_{Pr,J}$ Sase 75 $t_{s}=0$ . $N_{Pr,J}$ $t_{s}=0$ . $N_{Pr,J}$ $N_{Pr,J}$ $N_{Pr,J}$ $N_{Pr,J}$ $N_{Pr,J}$ $N_{Pr,J}$ $N_{Pr,J}$	6439 .6541 .6630 1; $\frac{t_e}{t_s} = 0.4$ ; $t_E$ 1; $\frac{t_e}{t_s} = 0.768$ ; $\frac{\rho}{\rho}$ 0.4123 .5824 .5835 .6106 .6313 .6480 .6620 .6738 .6842 1; $\frac{t_e}{t_s} = 0.2$ ; $t_E$ 0.4155 .900	$\begin{array}{c} 4359\\ 4630\\ 4630\\ 4691\\ \end{array}$ $=1.0;\ V_{\infty}=2$ $\begin{array}{c} e^{\mu e}\\ e^{\mu e} = 1.392\\ \end{array}$ $\begin{array}{c} 0.2920\\ 3700\\ 4113\\ 4298\\ 4440\\ 4553\\ 4648\\ 4728\\ 4797\\ \end{array}$ $=1.0;\ V_{\infty}=2$ $\begin{array}{c} e^{\mu e}\\ e^{\mu e} = 1.783\\ \end{array}$	2. 529 2. 708 2. 708 2. 874 20,400 fps; \$\( \sigma \) 0. 4123 1. 134 1. 590 1. 882 2. 133 2. 356 2. 743 2. 914 0.400 fps; \$\( \sigma \) 0. 4155 1. 186 1. 681	1. 119 1. 136 1. 151  =0.10; $\frac{h_w}{h_E}$ =0  0. 7098 9143 1. 000 1. 045 1. 079 1. 107 1. 130 1. 149 1. 166	7. 815 5. 364 4. 507 3. 803 3. 579 3. 402 3. 257
Sase 75 $t_s = 0$ . $N_{Pe,t}$	6439 .6541 .6630 1; $\frac{t}{t_*} = 0.4$ ; $t_B$ = 0.768; $\frac{\rho}{\rho}$ 0.4123 .5324 .5324 .5325 .6106 .6313 .6480 .6620 .6738 .6842 1; $\frac{t}{t_*} = 0.2$ ; $t_B$ = 0.768; $\frac{\rho}{\rho}$ 0.4155 .5471 .6054 .6372	$\begin{array}{c} .4559 \\ .4630 \\ .4630 \\ .4691 \\ \end{array}$ $\begin{array}{c} .4630 \\ .4691 \\ \end{array}$ $\begin{array}{c} .4630 \\ .4691 \\ \end{array}$ $\begin{array}{c} .4691 \\ \end{array}$ $\begin{array}{c} .264e \\ .2920 \\ .3760 \\ .4113 \\ .4298 \\ .4440 \\ .4553 \\ .4648 \\ .4797 \\ \end{array}$ $\begin{array}{c} .4440 \\ .4797 \\ \end{array}$ $\begin{array}{c} .4797 \\ \end{array}$ $\begin{array}{c} .4797 \\ \end{array}$ $\begin{array}{c} .2927 \\ .3837 \\ .4231 \\ .4443 \\ \end{array}$	2. 529 2. 708 2. 708 2. 874 20,400 fps; \$\( \sigma \) 0. 4123 1. 134 1. 590 1. 882 2. 133 2. 356 2. 743 2. 914 0.400 fps; \$\( \sigma \) 0. 4155 1. 186 1. 681	1. 119 1. 136 1. 151  = 0.10; $\frac{h_w}{h_E}$ = 0  0. 7098 9143 1. 000 1. 045 1. 079 1. 130 1. 149 1. 166  = 0.10; $\frac{h_w}{h_R}$ = 0  0. 6919 9069 1. 000 1. 0350	7. 815 5. 364 4. 507 3. 803 3. 579 3. 402 3. 257 
Sase 75 $t_s = 0$ . $N_{Pe,t}$	6439 .6541 .6630 1; $\frac{t_{\epsilon}}{t_{\epsilon}}$ = 0.4; $t_{B}$ $t_{e}$ = 0.768; $\frac{\rho}{\rho}$ 0.4123 .5324 .5835 .6106 .6313 .6480 .6620 .6738 .6842 : ; $\frac{t_{\epsilon}}{t_{\epsilon}}$ = 0.2; $t_{B}$ 0.4155 .5471 .6054 .6372 .6372 .6620	$\begin{array}{c} .4559 \\ .4630 \\ .4630 \\ .4691 \\ \end{array}$ $\begin{array}{c} .4630 \\ .4691 \\ \end{array}$ $\begin{array}{c} .4691 \\ \end{array}$ $\begin{array}{c} .264e \\ .2760 \\ .2920 \\ .3760 \\ .4113 \\ .4298 \\ .4440 \\ .4553 \\ .4548 \\ .4728 \\ .4797 \\ \end{array}$ $\begin{array}{c} .459 \\ .448 \\ .4797 \\ \end{array}$ $\begin{array}{c} .459 \\ .4797 \\ \end{array}$ $\begin{array}{c} .459 \\ .4797 \\ \end{array}$ $\begin{array}{c} .459 \\ .4797 \\ \end{array}$ $\begin{array}{c} .4797 \\ .4797 \\ \end{array}$ $\begin{array}{c} .4797 \\ .4797 \\ .4797 \\ \end{array}$	2. 529 2. 708 2. 778 2. 778 2. 874  20,400 fps; \$\( \su_{\text{a}}\)  0. 4123 1. 134 1. 580 2. 133 2. 356 2. 558 2. 743 2. 914  0. 400 fps; \$\( \su_{\text{a}}\)  0. 4155 1. 186 1. 681 2. 000 2. 276 522	1. 119 1. 136 1. 151  =0.10; $\frac{h_w}{h_E}$ =0  0. 7098 9143 1. 000 1. 045 1. 079 1. 107 1. 130 1. 149 1. 166  =0.10; $\frac{h_w}{h_R}$ =0  0. 6919 9039 1. 000 1. 050 1. 050 1. 059	7. 815 5. 364 4. 507 3. 803 3. 579 3. 402 3. 257 
$N_{Pr,J}$ asc 80 $N_{Pr,J}$ $N_{Pr,J}$ $N_{Pr,J}$ $N_{Pr,J}$ $N_{Pr,J}$	6439 .6541 .6630 1; $\frac{t}{t_*} = 0.4$ ; $t_B$ = 0.768; $\frac{\rho}{\rho}$ 0.4123 .5324 .5324 .5325 .6106 .6313 .6480 .6620 .6738 .6842 1; $\frac{t}{t_*} = 0.2$ ; $t_B$ = 0.768; $\frac{\rho}{\rho}$ 0.4155 .5471 .6054 .6372	$\begin{array}{c} .4559 \\ .4630 \\ .4630 \\ .4691 \\ \end{array}$ $\begin{array}{c} .4630 \\ .4691 \\ \end{array}$ $\begin{array}{c} .4630 \\ .4691 \\ \end{array}$ $\begin{array}{c} .4691 \\ \end{array}$ $\begin{array}{c} .264e \\ .2920 \\ .3760 \\ .4113 \\ .4298 \\ .4440 \\ .4553 \\ .4648 \\ .4797 \\ \end{array}$ $\begin{array}{c} .4440 \\ .4797 \\ \end{array}$ $\begin{array}{c} .4797 \\ \end{array}$ $\begin{array}{c} .4797 \\ \end{array}$ $\begin{array}{c} .2927 \\ .3837 \\ .4231 \\ .4443 \\ \end{array}$	2. 529 2. 708 2. 708 2. 874 20,400 fps; \$\( \sigma \) 0. 4123 1. 134 1. 590 1. 882 2. 133 2. 356 2. 743 2. 914 0.400 fps; \$\( \sigma \) 0. 4155 1. 186 1. 681	1. 119 1. 136 1. 151  = 0.10; $\frac{h_w}{h_E}$ = 0  0. 7098 9143 1. 000 1. 045 1. 079 1. 130 1. 149 1. 166  = 0.10; $\frac{h_w}{h_R}$ = 0  0. 6919 9069 1. 000 1. 0350	7. 815 5. 364 4. 507 3. 803 3. 579 3. 402 3. 257

Δ* _{tr}	$\frac{\zeta_w'}{\zeta_w'(\beta=1)}$	f'' _w	\$ 'w	g' _w	β
_					Case 81
$\frac{h_w}{h_B} = 0.0152$	w=0.005066;	35,600 fps; ያ	=0.333; $V_{\infty}$ =	$1; \frac{t_s}{t_s} = 1.0; t_R =$	$t_s=0.3$
			$\frac{\epsilon\mu\epsilon}{\epsilon\mu\omega} = 0.3503$	$v_{,w} = 0.709; \frac{\rho_{,w}}{\rho_{,w}}$	$N_{Pr,j}$
1. 423 . 9359 . 7822 . 7125 . 6639 . 6278 . 5995 . 5768 . 5578	0. 7485 . 9301 1. 000 1. 035 1. 061 1. 081 1. 098 1. 112 1. 124 1. 126 1. 393	0. 2510 .6117 .8226 .9520 1. 061 1. 156 1. 241 1. 318 1. 389 1. 406	0. 1871 . 2325 . 2500 . 2587 . 2652 . 2703 . 2744 . 2779 . 2809 . 2816 . 3482	0. 2510 3119 3353 3471 3558 3626 3682 3729 3769 3779 4699	5 1.0 1.4 1.8 2.2 2.6 3.0 3.4
-0.045:	-0.015. <u>h</u> r	25 600 fue: 2	=0.333; $V_{\infty}$ =		ase 82
-0.045,	$w=0.015, \overline{h_B}$	sa,noo ipa, s			
			$\frac{e\mu \cdot e}{e\mu \cdot e} = 0.5138$	$\rho_{,w} = 0.693; \frac{\rho_{,w}}{\rho_{,w}}$	$N_{Pr,j}$
1. 776 1. 169 9796 8937 . 8341 . 7895 . 7548 . 7268 . 7036	0. 7460 . 9297 I. 000 1. 035 I. 061 I. 082 I. 099 I. 113 I. 125 I. 127	0. 3020 . 7503 J. 014 1. 177 1. 314 1. 435 1. 593 1. 641 1. 731 1. 753	0. 2174 . 2709 . 2914 . 3017 . 3093 . 3152 . 3201 . 3242 . 3277 . 3285	0. 3020 3762 4047 4189 4295 4378 4446 4503 4552 4563	0 .5 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.5

$N_{Pr}$ ,	$r_{\text{, w}} = 0.768; \frac{\rho}{\rho}$	$\frac{e^{\mu}r}{w^{\mu}w} = 0.6897$			
0	0. 3463	0. 2705	0. 3463	0.7418	2, 149
. 5	. 4333	. 3387	. 8855	. 9287	1, 418
1.0	. 4665	. 3647	1. 205	1.000	1. 193
1.4	. 4832	. 3777	1.403	1.036	1.090
1.8	. 4955	. 3873	1. 571	1.062	1.019
2. 2	. 5052	. 3949	1.719	1.083	. 9664
2.6	. 5131	. 4010	1.852	1. 100	9251
3.0	. 5197	. 4062	1. 973	1.114	. 8918
3.4	. 5254	. 4106	2.085	1. 126	1
3.5	. 5267	. 4116	2. 111	1, 129	
∞	. 6606	. 5131		1. 407	

	-					*	-				
Ca	se 84	1:									
t	<b>.</b> =0.	$1; \frac{t_{\epsilon}}{t_{\epsilon}}$	=0.8; t	s=0,333	3; ™ _∞	=35	,600	fps; ζ	u=0.0	15; $\frac{h_w}{h_B}$ =	0.045;
i	$N_{Pr, j}$	/. w=	=0.693; <del>/</del>	$\frac{\sigma_{e\mu_{e}}}{\omega_{\mu_{w}}} = 0$	.5548						

0 1.0 1.4 1.8 2.2 2.6 3.4 3.5	0.3037 .3779 .4078 .4230 .4344 .4435 .4509 .4571 .4625 .4637	0. 2179 . 2709 . 2921 . 3029 . 3110 . 3174 . 3226 . 3270 . 3308 . 3316	0. 3037 .7390 1. 001 1. 163 1. 301 1. 422 1. 531 1. 629 1. 720 1. 742	0. 7458 . 9273 J. 000 1. 037 J. 065 J. 086 J. 104 J. 119 J. 132 J. 135	2. 175 1. 463 1. 227 1. 118 1. 041 . 9837 . 9386 . 9021 . 8718 . 8649
	*	-			

β	g' _w	٢ <u>′</u> ه	f'' _w	$ \frac{\zeta_w'}{\zeta_w'(\beta=1)} $	$\Delta_{tr}^{ullet}$
Case 8	5: $t_s = 0.6; t_B = $	=0.333; V _{\alpha} =	=35,600 fps; }	$h_w=0.015; \frac{h_w}{h_B}$	=0.045;
$N_{Pr}$	$f_{u}=0.693; \frac{\rho_{u}}{\rho_{u}}$	$\frac{\mu_{\sigma}}{\mu_{\varpi}} = 0.6127$			
0 .5 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.5	0 3056 .3795 .4110 .4274 .4398 .4498 .4580 .4649 .4709 .4723	0. 2184 . 2708 . 2929 . 3043 . 3130 . 3199 . 3256 . 3281 . 3346 . 3355	0. 3056 . 7246 . 9838 I. 146 1. 284 1. 406 1. 515 I. 614 1. 706 1. 728	0. 7458 . 9246 1. 000 1. 039 1. 069 1. 092 1. 112 1. 123 1. 142	2. 817 1. 942 1. 631 1. 484 1. 379 1. 299 1. 236 1. 185 1. 143 1. 133
- Case 8			·	·	
$t_s = 0$	.1; $\frac{t_e}{t_s} = 0.4$ ; $t_R$	=0.333; V _∞ =	=35,600 fps; }	$h_{\omega}=0.015; \frac{h_{\omega}}{h_{R}}$	=0.045;
$N_{Pr}$	$r_{,u} = 0.693; \frac{\rho_{,u}}{\rho_{,u}}$	$\frac{e^{\mu} \cdot e}{e^{\mu} \cdot e} = 0.7051$			
0 1.0 1.4 1.8 2.2 2.6 3.0 3.1	0. 3076 . 3808 . 4141 . 4320 . 4458 . 4570 . 4663 . 4742 . 4760	0. 2191 . 2705 . 2935 . 3059 . 3153 . 3230 . 3293 . 3348 . 3360	0. 3076 . 7054 . 9602 1. 122 1. 260 1. 383 1. 493 1. 593 1. 617	0. 7465 . 9213 I. 000 1. 042 1. 074 1. 100 1. 122 1. 140 1. 145	4. 048 2. 871 2. 417 2. 195 2. 035 1. 911 1. 812 1. 732
ase 8	7; .1; $\frac{t_e}{t_s} = 0.2$ ; $t_E$	=0.333; V _∞ =	=35,600 fps; j	$\tau_w = 0.015; \frac{h_w}{h_R}$	=0.045;
$N_{Pr}$	$x_{vw} = 0.693; \frac{\rho_{w}}{\rho_{w}}$	$\frac{e^{\mu}}{e^{\mu}} = 0.8984$			
0 . 5 1. 0	0. 3101 . 3817 . 4173 . 4372 . 4529 . 4658	0. 2200 . 2698 . 2941 . 3077 . 3183 . 3270 . 3345	0. 3101 . 6797 . 9275 1. 088 1. 226 1. 350 1. 462	0. 7478 . 9172 1. 000 1. 046 1. 082 1. 112 1. 137 1. 159	7. 651 5. 622 4. 753 4. 309 3. 981 3. 725 3. 518
1. 4 1. 8 2. 2 2. 6 3. 0 3. 1 3. 2	. 4769 . 4864 . 4886 . 4908	. 3409 . 3424 . 3438	1. 564 1. 589 1. 612	1. 164 1. 169	3. 346 3. 307
1. 8 2. 2 2. 6 3. 0 3. 1 3. 2	. 4864 . 4886 . 4908	. 3409 . 3424 . 3438	1. 589 1. 612	1. 164	3. 307
1. 8 2. 2 2. 6 3. 0 3. 1 3. 2	. 4864 . 4886 . 4908	. 3409 . 3424 . 3438	1. 589 1. 612	1. 164	3. 307
1. 8 2. 2 2. 6 3. 0 3. 1 3. 2 Case 8 t _* =0	$\begin{array}{c c}  & 4864 \\  & 4886 \\  & 4908 \end{array}$ 8: $.033; \frac{t_s}{t_s} = 1.0; t_s$	$\begin{array}{c} .3409 \\ .3424 \\ .3438 \\ \end{array}$	1. 589 1. 612	1. 164	3. 307

β	g' _w	ζ'ω	$f_{w}^{\prime\prime}$	$ \frac{\xi'_{w}}{\xi'_{w}(\beta=1)} $	$\Delta_{tr}^{\star}$
Case 89				· <u> </u>	
		$t_E=2.19; V_{\infty}$	=13,700 fps;	$\zeta_w = 0.10; \frac{h_u}{h_E}$	=0.0456;
$N_{P_7}$	$\rho_{v} = 0.693; \frac{\rho}{\rho_{v}}$	$\frac{e\mu_a}{e\mu_w} = 1.474$			
0 .5 1.0 1.4 1.8 2.2 2.6 3.0 3.1	0. 4104 . 6684 . 7405 . 7747 . 7994 . 8185 . 8337 . 8464 . 8493 1. 095	0. 2630 . 4310 . 4779 . 5002 . 5163 . 5287 . 5386 . 5469 . 5487 . 7052	0. 4104 2. 639 3. 861 4. 608 5. 239 5. 791 6. 286 6. 737 6. 844	0. 5503 .9017 1. 000 1. 047 1. 080 1. 106 1. 127 1. 144 1. 148 1. 476	13. 96 8. 228 7. 159 6. 711 6. 412 6. 194 6. 028 5. 895
ase 90					<i>L</i>
	••	$t_E=2.19; V_{\infty}$	=13,700 fps;	$\zeta_w = 0.2193;$	$\frac{h_B}{h_B}=0.10;$
$N_{Pr}$	$r_{v}=0.768; \frac{\rho}{\rho v}$	$\frac{e\mu}{e\mu} = 1.969$	_		
0 . 5 1. 0 1. 4 1. 8 2. 2 2. 6 3. 0 3. 1	0. 4546 . 7654 . 8502 . 8906 . 9197 . 9421 . 9602 . 9752 . 9785 1. 273	0. 2703 . 4602 . 5121 . 5368 . 5546 . 5683 . 5794 . 5885 . 5906 . 7684	0. 4546 3. 401 5. 043 6. 061 6. 928 7. 692 8. 382 9. 014 9. 165	0. 5277 . 8987 1. 000 1. 048 1. 083 1. 110 1. 131 1. 149 1. 153 1. 501	18. 82 10. 88 9. 489 8. 908 8. 521 
Case 91				<u> </u>	<u>'</u>
$t_r = 0$ .	$033; \frac{L_s}{t_s} = 1.0; t$	$E = 0.333; V_{\infty}$	=35,600 fps;	$\zeta_w = 0.005060$	$6; \frac{n_w}{h_E} = 0.0152;$
$N_{Pr.}$	$r_{uv}=0.709; \frac{\rho_{u}}{\rho_{u}}$	$\frac{\mu_{v}}{\mu_{w}} = 0.5122$			
	0. 2564	0. 1889 . 2679	0. 2564 . 9838 1. 385	0. 6440 . 9134 1. 000	3.852 2.443 2.102
0 .5 1.0 1.4 1.8 2.2 2.6 3.0 3.3	. 3629 . 3972 . 4137 . 4258 . 4351 . 4426 . 4489 . 4530 . 5700	. 2933 . 3056 . 3145 . 3214 . 3270 . 3316 . 3346 . 4191	1. 628 1. 830 2. 006 2. 162 2. 304 2. 401	1. 042 1. 072 1. 096 1. 115 1. 131 1. 141 1. 429	1, 954 1, 853 1, 779 1, 723 1, 677
.5 1.0 1.4 1.8 2.2 2.6 3.0 3.3 $\infty$	. 3972 . 4137 . 4258 . 4351 . 4426 . 4489 . 4530 . 5700	. 3056 . 3145 . 3214 . 3270 . 3316 . 3346 . 4191	1. 628 1. 830 2. 006 2. 162 2. 304 2. 401	1, 042 1, 072 1, 096 1, 115 1, 131 1, 141 1, 429	1. 853 1. 779 1. 723 1. 677
.5 1.0 1.4 1.8 2.2 2.6 3.0 3.3 \$\infty\$ Case 92 \$\tau_s = 0.0\$	$\begin{array}{c} 3972 \\ 4137 \\ 4258 \\ 4351 \\ 4426 \\ 4489 \\ 4530 \\ 5700 \\ \end{array}$	. 3056 . 3145 . 3214 . 3270 . 3316 . 3346 . 4191	1. 628 1. 830 2. 006 2. 162 2. 304 2. 401	1, 042 1, 072 1, 096 1, 115 1, 131 1, 141 1, 429	1. 853 1. 779 1. 723 1. 677
$t_s = 0$ .	. 3972 . 4137 . 4258 . 4351 . 4426 . 4489 . 4530 . 5700	. 3056 . 3145 . 3214 . 3270 . 3316 . 3346 . 4191	1. 628 1. 830 2. 006 2. 162 2. 304 2. 401	1, 042 1, 072 1, 096 1, 115 1, 131 1, 141 1, 429	1. 853 1. 779 1. 723 1. 677

β	$g'_{w}$	<i>\$</i> ′  ,	$f_{w}^{\prime\prime}$	$\frac{\zeta_w'}{\zeta_w'(\beta=1)}$	$\Delta_{tr}^*$
Case 9	3:		·	·	
$t_s=0$	.033; $\frac{t_e}{t_e}$ =0.8;	$t_E = 0.333; V$	=35,600 fps	s; ເພ=0.015;	$\frac{h_w}{=} = 0.045$ ;
	· t.	- ' , (		7,00	l E
$N_{Pr}$	$f_{\nu} = 0.693; \frac{\rho}{\rho_{\nu}}$	$\frac{e^{\mu}e}{e^{\mu}w}$ =0.8122			
				<del>,                                    </del>	
0 . 5	0.3092 .4398	0. 2197 . 3127	0. 3092 1. 201 1. 708	0. 6388 . 9095	5. 862 3. 763
1.0 1.4	. 4836 . 5052	. 3439 . 3592	2.019	1.000 1.044	3. 226 2. 989
1.8 2.2	. 5210	. 3704	2, 282 2, 510	1. 077 1. 103	2, 826 2, 706
2. 6 3. 0 3. 2	. 5435 . 5519 . 5556	. 3862 . 3922 . 3948	2. 714 2. 899 2. 985	1, 123	2. 612 2. 538
. 4	. 5556		2. 800	1. 148	
1 6	4.				
t.=0	4: .033; $\frac{t_e}{t_d} = 0.6$ ; $\epsilon$	/ g=0 333· T/	=35 600 fps	s: c _m =0.015: -	± _w =0 045•
	-		00,000 172	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	IR O.O.O.
$N_{Pr}$	$r_{v,w} = 0.693; \frac{\rho_{w}}{\rho_{w}}$	$\frac{\mu_e}{\mu_{\mu}} = 0.8984$			
)	0.3101	0. 2200	0. 3101	0. 6352	7. 658
, 5 1, 0	. 4418	. 3135 . 3463	1, 190 1, 707	. 9051 1. 000	4.968 4.237
1.4 1.8	. 5120 . 5295	. 3628 . 3751	2. 027 2. 298	1. 048 1. 083	3. 905 3. 674
2, 2 2, 6 3, 0 3, 2	. 5433	. 3847 . 3926	2. 535 2. 747	1.111	3. 502 3. 368 3. 259
3. 2	. 5640 . 5682	. 3991 . 4021	2. 939 3. 030	1. 152 1. 161	3. 212
ase 9					
$t_s = 0$ .	.033; $\frac{t_{\theta}}{t_{\theta}} = 0.4$ ; $t_{\theta}$	$e_{E}=0.333;\ V_{c}$	=35,600 fps	$\zeta_w = 0.015; \frac{h}{h}$	$\frac{w}{B} = 0.045;$
$N_{Pr}$	$r_{vw} = 0.693; \frac{\rho_{w}}{\rho_{w}}$	$\frac{\mu \epsilon}{\epsilon} = 1.037$			
- •••	ρυ	μ ω			
				-,7	
		0.2203	0.3110	0.6295	11.32
 ) , 5	0.3110		1, 185		7.427
. 5 l. 0	0. 3110 . 4448 . 4952	. 3148	1, 185 1, 717	. 8995 1. 000	7. 427 6. 294
. 5	. 4448	. 3148	1. 185 1. 717	. 8995	7.427
. 5 l. 0 ———	. 4448	. 3148	1. 185 1. 717	. 8995	7.427
. 5 l. 0 	. 4448	.3148 .3499	1. 185 1. 717	. 8995 1. 000	7. 427 6. 294
ase 90	6: $033; \frac{t_s}{t_s} = 0.2; t$	.3148 .3499 	1. 185 1. 717	. 8995 1. 000	7. 427 6. 294
ase 90	. 4448 . 4952	.3148 .3499 	1. 185 1. 717	. 8995 1. 000	7. 427 6. 294
ase 90	6: $033; \frac{t_s}{t_s} = 0.2; t$	.3148 .3499 	1. 185 1. 717	. 8995 1. 000	7. 427 6. 294

TABLE III.—TABLES OF SIMILAR SOLUTIONS FOR EQUILIBRIUM DISSOCIATED AIR,  $F = 0(N_{Le} = 1)$ —Con. (a) Heat-transfer cases—Concluded

t.	t _R	$V_{\infty}$ , fps	ζ	$\frac{h_w}{h_E}$	$N_{P au,f,w}$	<u>ρ «μ «</u> ρ <u>ω μ «</u>	ζw	f'w
	 1		0.0476	0. 01520	0. 709	1.0	0. 2609	0. 3683
	3. 131	11,300	1565	. 04998	. 699 . 768	1. 529 1. 969	. 2591 . 2387	. 4326 . 4695
0, 0476	2, 380	13, 100	{ .0362 .238	, 01521 , 10	. 708 . 768	. 9056 1. 783	. 2527 . 2646	. 3522 . 4565
	. 9520	20, 900	$\left\{ \begin{array}{c} .0145 \\ .0952 \end{array} \right $	. 01523	. 708 . 768	. 6535 1. 286	. 2222	. 3037 . 4085
1	. 4760	29, 700	. 00724 . 0476	. 01521 . 10	. 708 . 768	. 5123 1. 009	. 1993 . 2815	. 2706 . 3708
Ì	1. 430	17,000	$ \begin{cases} .02173 \\ .0715 \\ .143 \end{cases} $	. 01520 . 050 . 10	. 709 . 699 . 768	1. 0 1. 529 1. 969	. 2374 . 2630 . 2887	. 3282 . 3944 . 4345
. 02173	1.086	19,600	0165	. 01519 . 1004	. 709 . 768	. 9052 1. 785	. 2279	. 3136 . 4199
	. 4346	31, 100	{ .0066 .0435	. 01519	. 709 . 768	. 6530 1. 286	. 1974	. 2692
. 01235	. 8125	22,700	. 01235 . 0406 . 0812	. 01520 . 04997 . 09994	. 709 . 699 . 768	1, 0 1, 529 1, 969	. 2184 . 2519 . 2923	. 3002 . 3646 . 4054
.01255	.6175	26, 100	. 00938 . 0618	.01519	. 709 . 768	. 9053 1. 783	. 2092 . 2887	. 2867 . 3904
20-21	, 5224	28, 400	. 00794 . 0261	. 01520	. 709 . 698	1. 0 1. 529	. 2040	. 2795 . 3414 . 3819
.00794	, 3970	32,600	. 0522 . 00603 . 0397	.09992 .01519 .10	. 768 . 709 . 768	1, 969 , 9052 1, 783	. 2856 . 1954 . 2790	. 2670

(b) Insulated wall cases

β	7	$g_{\mathbf{u}}^{\prime}$	$f_w^{\prime\prime}$
Case 1:	$t_s=1; \frac{t_s}{t_s}$	$-0.99; t_R=1$	
0	0. 8315 . 7935	0. 4698 . 5706	0. 4698 1. 230
Case 2:	$t_s=1; \frac{t_s}{t_s}$	$=0.95; t_B=1$	·
0 1 2 3	0. 8318 . 7942 . 7787 . 7694	0. 4706 . 5711 . 6061 . 6269	0, 4706 1, 222 1, 670 2, 023
Case 3;	$t_{s}=1;\frac{t_{s}}{t_{s}}$	$=0.8; t_R=1$	' -
0 1 2 3	0. 8331 . 7974 . 7824 . 7733	0, 4737 . 5731 . 6091 . 6307	0. 4737 1. 188 1. 618 1. 956
Case 4:	$t_s = 1; \frac{t}{t}$	$t_{B} = 0.6; t_{B} = 1$	·
0 1 2 3.1	0, 8353 , 8025 , 7883 , 7789	0. 4787 . 5766 . 6142 . 6391	0. 4787 1. 139 1. 542 1. 888
Case 5:	$t_s=1; \frac{t_s}{t_s}$	=0.4; t _E =1	ı
0 1 2 3. 1	0. 8378 . 8082 . 7951 . 7862	0. 4851 . 5811 . 6210 . 6482	0. 4851 1. 082 1. 454 1. 774
Case[6:	$t_s=1; \frac{t_r}{t_s}$	$=0.2; t_R=1$	
0 1 2 3 3. 3	0. 8401 . 8143 . 8022 . 7946 . 7928	0. 4937 . 5867 . 6360 . 6584 . 6654	0. 4937 1. 007 1. 337 1. 599 1. 669
Case 7:	$t_s = 1; \frac{t_s}{t_s}$	=0.99; t _B =0.5	· · •
0	0. 8341 . 7956	0. 4698 . 5715	0. 4698 1. 236
Case 8:	$t_s = 1; \frac{t_e}{t_s}$	$=0.95; t_B=0.5$	
0 1 2 2.7	0. 8327 . 7944 . 7788 . 7718	0. 4707 . 5720 . 6071 . 6225	0. 4707 1. 226 1. 677 1. 931

β	7	$g'_{\omega}$	f''
Case 9:	$t_a=1; \frac{t_a}{t_a}$	$=0.8; t_{E}=0.5$	'
0	1	0. 4741	0.4741
1	0. 8281 . 7907 . 7749 . 7677	. 5738	0, 4741 1, 189
2	. 7749	. 6098	1.620
2. 7	. 7677	. 6258	1. 863
Case 10:	$t_{e}=1;\frac{t_{e}}{t_{s}}$	$=0.6; t_R=0.5$	
0	0. 8241	0, 4790	0. 4790
1	. 7883	. 5765	1, 136 1, 537 1, 853
$\frac{2}{3}$	. 7883 . 7727	. 6139	1. 537
3	. 7631	. 6368	1. 853
Case 11:	$t_s=1; \frac{t_e}{t_s}$	$=0.4; t_B=0.5$	
0	0. 8222	0. 4852	0, 4852
	. 7892	. 5799	1. 074
$\frac{1}{2}$	. 7743	. 6193	1.441
3	. 7650	. 6441	1. 441 1. 730 1. 808
3. 3	. 7743 . 7650 . 7628	. 6501	1.808
Case 12:	$t_s=1; \frac{t_s}{t_s}$	$=0.2; t_B=0.5$	
	1		l
0	0. 8220	0.4933	0. 4933
1	. 7932	. 5836 . 6260	1 671
$\frac{1}{2}$	7709	. 6540	1 568
3. 4	. 7795 . 7708 . 7681	. 6629	. 9909 1. 671 1. 568 1. 658
Case 13;	$t_s=0.99; \frac{t_c}{t_s}$	$=1; t_B=1$	
			0.4000
$0 \\ 1$	0, 8316 . 8447	0. 4698 . 5711	0. 4698 1. 236
Case 14:	t -		
	$t_s = 0.95; \frac{t_c}{t_s}$	=1; t _B =1	
0	0.8317	0.4705	0 4705
Ĭ	. 8451	0. 4705 . 5736	0. 4705 1. 253
Case 15;	$t_s = 0.333; \frac{t_c}{t_o}$	=1; t _R =21.9	
	1		
0 1	0.8194	0. 4893	0. 4893
1 9	. 8418 . 8469	. 7070 . 7661 . 7994	2, 974 3, 581
2 3	. 8498	. 7994	4. 436
3. 5	. 8509	. 8116	2, 474 3, 581 4, 436 4, 810
Case 16;	$t_a = 0.333; \frac{t_e}{t_s}$	$=1; t_B=3.333$	
			·
0 1	0. 8709 . 8846	0. 4888 . 6600	0. 4888 1. 936

(b) Insulated wall cases-Concluded

β	7	g'w	f''
Case 17:	$t_{\bullet}=0.333; \frac{t}{t}$	$\frac{e}{s} = 1; t_B = 0.667$	·
0 1 2 3, 2	0. 8265 . 8438 . 8485 . 8516	0. 4872 . 6497 . 6981 . 7301	0. 4872 1. 836 2. 604 3. 306
Case 18:	$t_s = 0.333; \frac{t_s}{t_s}$	$t_B = 0.8; t_B = 0.66$	7
0 1 2 3, 2	0. 8271 . 8347 . 8355 . 8360	0. 4900 . 6523 . 7032 . 7374	0. 4900 1. 781 2. 525 3. 208
Case 19:	$t_{s}=0.333; \frac{t_{s}}{t_{s}}$	$t = 0.4; t_B = 0.667$	7
0 1 2 3	0. 8282 . 8218 . 8165 . 8129	0. 4969 - 6571 - 7152 - 7506	0, 4969 1, 634 2, 317   2, 852
Cuse 20:	$t_s = 0.333; \frac{t_e}{t_s}$	$=0.2; t_R=0.667$	
0 1 2 3 3, 4	0. 8283 . 8171 . 8092 . 8038 . 8021	0. 5015 - 6577 - 7213 - 7619 - 7748	0, 5015 1, 518 2, 153 2, 653 2, 831
Case 21:	$t_s = 0.1; \frac{t_e}{t_s}$	$=1; t_R=6.58$	
0 1 2 3	0, 8503 , 8764 , 8804 , 8826	0, 5014 , 8828 , 9674 1, 014	0, 5014 4, 929 7, 271 9, 060
Case 22:	$t_s = 0.1; \frac{t_e}{t_s}$	$=1; t_R \approx 1.73$	
0 1 2 3.1	0, 8553 , 8747 , 8784 , 8807	0, 5006 , 7935 , 8646 , 9069	0. 5006 3. 468 5. 064 6. 399
Case 23:	$t_s = 0.1; \frac{t_e}{t_s}$	$=0.75$ ; $t_B=1.73$	
0 1 2 2. 9	0. 8543 . 8672 . 8681 . 8685	0, 5026 . 8040 . 8820 . 9223	0, 5026 3, 460 5, 080 6, 211

β	$\overline{r}$	$g_w'$	$f_w^{\prime\prime}$
Case 24:	$t_s = 0.1; \frac{t_s}{t_s}$	$=0.5; t_B=1.73$	
0 1 2 3	0. 8528 . 8588 . 8563 . 8546	0, 5047 , 8210 , 9089 , 9598	0. 5047 3. 512 5. 197 6. 496
Case 25:	$t_s=0.1; \frac{t_s}{t_s}$	=0,262; t _B =1.7	73
0 1 2 3	0. 8510 . 8475 . 8400 . 8351	0. 5071 . 8684 . 9744 1. 038	0. 5071 3. 953 5. 902 7. 410
Case 26:	$t_{\bullet} = 0.1; \frac{t_{\bullet}}{t_{\bullet}}$	$=1; t_B=1$	<u></u>
0 1 2 3. 2	0. 8406 . 8610 . 8651 . 8078	0. 4997 . 7798 . 8488 . 8928	0. 4997 3. 276 4. 773 6. 127
Tase 27;	$t = 0.1; \frac{t}{t}$	$t = 0.8; t_B = 1$	<u>.                                    </u>
0 1 2 2. 4	0. 8404 . 8554 . 8572 . 8577	0. 5012 . 7850 . 8588 . 8775	0, 5012 3, 230 4, 726 5, 214
Case 28;	$t_s = 0.1; \frac{t_s}{t_s}$	=0.4; t _K =1	<u> </u>
0 1 2 3	0, 8393 , 8433 , 8399 , 8373	0, 5045 . 8003 . 8883 . 9402	0. 5045 3. 158 4. 677 5. 853
Case 29;	$t_s = 0.1; \frac{t_s}{t_s}$	$=0.2; t_R=1$	
0 1 2. 2	0, 8379 , 8350 , 8263	0. 5067 . 8266 . 9437	0, 5067 3, 319 5, 242
'ase 30:	$t_s = 0.033; \frac{t_r}{t_s}$	=1; t _B =2.19	
0 . 75	0. 8552 . 8794	0. 5068 1. 015	0. 5068 7. 268
Tase 31; (β=		luta solutiona	
t. Ac	lditional flat-p	r r	f'' _w
0. 01235 . 01235	0, 812 . 618	0. 8315 . 8243	0, 5119 , 5065

## TABLE IV.—TABLES OF SIMILAR SOLUTIONS FOR EQUILIBRIUM DISSOCIATED AIR, NONUNIT LEWIS NUMBER

#### (a) Heat-transfer cases

β	$\zeta_w'(F=F_1)$	$\zeta_{w}'(F=F^{2})$	$\zeta_{w}'(F=F)$
Case 1:	$t_s = 1; \frac{t_r}{t_s} = 1; t_R =$		
0 . 5 1	0. 2551 . 2735 . 2829	0. 2605 . 2789 . 2884	0. 2551 . 2734 . 2828
Case 2:	$t_s = 1; \frac{t_s}{t_s} = 1; t_B =$	=1; $\zeta_w$ =0.0152	·
0 . 5 1	0. 2319 . 2486 . 2572	0. 2445 . 2614 . 2701	0. 2383 . 2551 . 2638
Case 3:	$t_s = 1; \frac{t_c}{t_s} = 1; t_s$		ove typ
0 . 5 1 2 3 3. 5	0. 3150 . 3404 . 3531 . 3675 . 3763 . 3795	0. 3355 . 3612 . 3742 . 3890 . 3979 . 4013	0. 3254 . 3509 . 3638 . 3785 . 3874 . 3907
Case 4:	$t_s=1; \frac{t_r}{t_s}=1; t_B=$	0.5; $\zeta_w = 0.05$	
0 . 5 1 2 3 3. 5	0. 2875 . 3104 . 3219 . 3349 . 3427 . 3457	0. 3329 . 3564 . 3684 . 3822 . 3905 . 3936	0. 2997 . 3227 . 3342 . 3474 . 3553 . 3583
Case 5:	$0.333; \frac{t_c}{t_s} = 1; t_B =$	3,333; $\zeta_w$ =0.05	066
0 . 5 1	0. 2588 . 2939 . 3097	0. 2588 . 2939 . 3097	0. 2588 . 2939 . 3097
Case 6:	$t_s = 0.333; \frac{t_r}{t_s} = 1; t$	g=3. 333; ζ _w =0	.3333
0 . 5 1	0. 2386 . 2838 . 3027	0. 2386 . 2838 . 3027	0. 2386 . 2838 . 3027
Case 7:	$t_s = 0.333; \frac{t_s}{t_s} = 1;$	t _E =0.667; ζ _w =0	0.04
0 . 5 1 2 3 3. 5	0. 2598 . 2945 . 3102 . 3272 . 3371 . 3408	0. 2645 . 2992 . 3149 . 3320 . 3419 . 3456	0. 2594 . 2940 . 3097 . 3269 . 3369 . 3406

β	$\zeta_w'(F=F_1)$	$\zeta_w'(F=F_2)$	$\zeta_w'(F=F)$	
Case 8:	$t_s = 0.333; \frac{t_s}{t_s} = 1; t$	$E = 0.333; \zeta_w = 0$	.03333	
0	0. 2752	0. 2880	0. 2823	
. 5 1	. 3119	. 3246	. 3189	
2	. 3286	. 3413 . 3595 . 3702	. 3355 . 3536	
3	. 3572	3702	. 3642	
3 3. 5	. 3612	. 3742	. 3681	
Case 9:	, , , t _c , ,			
	$t_{s}=0.1; \frac{t_{c}}{t_{s}}=1; t$	$_{B}$ =6.58; $_{V}_{w}$ =0.6	3579	
0	0. 09330	0.09330	0.09330	
5	. 1545	. 1545	. 1545	
1	. 1730	. 1730	. 1730	
Case 10:	t =0.1: t,	-1.2 -0.0150		
	$t_s = 0.1; \frac{t_s}{t_s} = 1; t_s$	$g = 1$ , $g_w = 0.0152$		
0	0. 2235 . 2802 . 3017			
0 . 5 1	. 2802	. 2805	. 2814 . 3028	
1	. 3017	. 3020	. 3028	
Case 11:	$t_{e} = 0.1; \frac{t_{e}}{t} = 1; t_{B} = 0.1; t_{B} = 0.1;$	 0 999, %0 000	140	
	$t_s = 0.1; t_s = 1; t_R = 1$	0.003; ζ ₁₁ = 0.033	555	
0	0. 2768 . 3451 . 3713 . 3979 . 4152	0. 2816	0. 2786	
. 5	. 3451	. 3500	0. 2786 . 3467	
1	. 3713	. 3762	. 3728	
$\frac{2}{3.2}$	. 3979	0. 2816 . 3500 . 3762 . 4029 . 4178	. 3996	
	.4102	.41/0	. 4170	
Case 12:	$=0.033; \frac{t_e}{t_e}=1; t_B$	=2.19; $\zeta_{10}$ =0.21	93	
	, t,			
0	0. 2703	0. 2703 . 4602 . 5121	0.2703	
. 5	. 4602 . 5121	. 4602	. 4604	
1				
Case 13:	0.033: -=1: / n=	0.333° ≿=0.00°	F066	
	$0.033; \frac{t}{t_s} = 1; t_E =$			
	0. 1925	0. 1947	0. 1928	
0 . 5 1	. 2715 . 2971	. 2737 . 2994	. 2722 . 2984	
		7 <b>u</b> ua	7084	

Case 14:	onal flat-pl	ate solutions	(β=0)		
t.	t B	\$ u	$\zeta_w'(F=F_1)$	$\zeta_w'(F=F_2)$	$\zeta_w'(F=F_3)$
0. 01235 . 01235	0.812 .618	0. 0812 . 00938	0. 2965 . 2121	0. 2977 . 2130	0. 2980 . 2126

# $\begin{array}{c} \textbf{TABLE IV.--TABLES OF SIMILAR SOLUTIONS FOR EQUILIBRIUM DISSOCIATED AIR, NONUNIT } \\ \textbf{LEWIS NUMBER---Concluded} \end{array}$

(b) Insulated wall cases

β	$ ilde{ au}(F=F_1)$	$\overline{r}(F=F_2)$	$\overline{\tau}(F=F_3)$			
Case 1: $t_{s}\!=\!0.333; \frac{t_{s}}{t_{s}}\!=\!1;  t_{B}\!=\!3.333$						
0	0. 8137 . 8312	0. 7978 . 8158	0. 8022 . 8220			
Case 2: $t_s = 0.333; \frac{t_s}{t_s} = 1; t_B = 0.667$						
0 1	0. 8762 . 8920					
Case 3: $t_* = 0.1; \frac{t_*}{t_*} = 1; t_B = 6.58$						
0 0.8502 1 8764		0. 8502 . 8764	0. 8502 . 8764			

β	<b>7</b> (F=	$F_1$ ) $\overline{r}$	$F=F_2$	$\overline{r}(F=F_3)$			
Case 4: $t_{\bullet} = 0.1; \frac{t_{\bullet}}{t} = 1; t_{B} = 1$							
0	0.819	95 0	. 7660 . 7937	0. 7776 . 8056			
Case 5: $t_s = 0.033; \frac{t_s}{t_s} = 1; t_B = 2.19$							
0 1	0.80		. 7827 . 8169	0. 8142 . 8499			
Case 6: Additional flat-plate solutions $(\beta=0)$							
t.	t B	$\tilde{r}(F=F_1)$	$\tilde{r}(F=F_2)$	$\overline{\tau}(F=F_3)$			
0. 01235 . 01235	0. 812 . 618	0. 8234 . 8489	0. 7545 . 7390	0. 7786 . 8022			

U.S. GOVERNMENT PRINTING OFFICE: 1963

